Обратное включение pn-перехода

Обратное включение p-n перехода образуется, когда положительный полюс источника питания подключается к n-области полупроводника, а отрицательный полюс — к p-области. Обратное включение p-n перехода, а также графики концентрации носителей заряда, потенциала и энергетических зон полупроводника показаны на рисунке 1.

Обратное включение pn-перехода
Рисунок 1. Обратное включение p-n перехода

При включении p-n перехода в обратном направлении, внешнее напряжение Uобр создает электрическое поле, совпадающее по направлению с собственным полем pn-перехода, что приводит к росту потенциального барьера на величину Uобр и увеличению относительного смещения энергетических диаграмм на q(Uk + Uобр). Это сопровождается увеличением ширины запирающего слоя, которая может быть найдена из соотношения (1.24) подстановкой вместо Uk величины Uk + Uобр.

формула определения толщины pn-перехода,        (1)

Возрастание потенциального барьера уменьшает диффузионные токи основных носителей (т. е. меньшее их количество преодолеет возросший потенциальный барьер). Для неосновных носителей поле в p-n переходе остается ускоряющим, и поэтому дрейфовый ток, как и в случае прямого включения p-n перехода не изменится.

Уменьшение диффузионного тока приведет к нарушению условия равновесия, устанавливаемого выражением (1.15). Через переход будет проходить результирующий ток, определяемый в основном током дрейфа неосновных носителей.

Концентрация неосновных носителей у границ p-n перехода вследствие уменьшения диффузионного перемещения основных носителей уменьшится до некоторых значений np1 и pn1. По мере удаления от p-n перехода концентрация неосновных носителей будет возрастать до равновесной. Значение концентрации неосновных носителей заряда на любом удалении x от границ p-n перехода можно рассчитать по следующим формулам, полученным при решении уравнения непрерывности для обратного включения p-n перехода:

формула концентрации дырок при удалении от pn перехода,        (2)
формула концентрации электронов при удалении от pn перехода,        (3)
     где φт = kT/q       — температурный потенциал (при 20°C равен 26 мВ); 
     k = 1.38×10−23Дж/К   — постоянная Больцмана;
     T                   — температура в градусах Кельвина;
     q = 1.6×10−19Кулона  — заряд электрона.

Вывод: при обратном включении p-n перехода ток через него практически не протекает. Для уменьшения этого тока нужно использовать полупроводники с более широкой запрещённой зоной и увеличивать степень их очистки от примесей.

Дата последнего обновления файла 10.05.2020

Литература:

  1. Электронные, квантовые приборы и микроэлектроника. Под редакцией Федорова Н. Д. - М.: Радио и связь, 1998. -560 с.
  2. Электронные приборы. Под редакцией Шишкина Г.Г. -М.: Энергоатомиздат, 1989.-496 с.
  3. Батушев В. А. Электронные приборы. -М.: Высшая школа, 1980. -383 с.
  4. Савиных В. Л. Физические основы электроники. Методические указания и контрольные задания. СибГУТИ, 2002.

Вместе со статьей "Обратное включение p-n перехода" читают:

Электронно-дырочный переход в состоянии равновесия
https://digteh.ru/foe/pn_perehod/

Прямое включение pn-перехода
https://digteh.ru/foe/pn_perehod/open/

Теоретическая вольтамперная характеристика p-n перехода
https://digteh.ru/foe/pn_perehod/vah_teor/

Полупроводники с электронной проводимостью
https://digteh.ru/foe/nsemicond/

Полупроводники с дырочной проводимостью
https://digteh.ru/foe/psemicond/

Дрейфовый ток
https://digteh.ru/foe/dreif_i/

Диффузионный ток
https://digteh.ru/foe/diffuz_i/


Поиск по сайту сервисом Яндекс
Поиск по сайту сервисом ГУГЛ
Об авторе:
к.т.н., доц., Александр Владимирович Микушин

Кандидат технических наук, доцент кафедры САПР СибГУТИ. Выпускник факультета радиосвязи и радиовещания (1982) Новосибирского электротехнического института связи (НЭИС).

А.В.Микушин длительное время проработал ведущим инженером в научно исследовательском секторе НЭИС, конструкторско технологическом центре "Сигнал", Научно производственной фирме "Булат". В процессе этой деятельности он внёс вклад в разработку систем радионавигации, радиосвязи и транкинговой связи.

Научные исследования внедрены в аппаратуре радинавигационной системы Loran-C, комплексов мобильной и транкинговой связи "Сигнал-201", авиационной системы передачи данных "Орлан-СТД", отечественном развитии системы SmarTrunkII и радиостанций специального назначения.

А.В.Микушин является автором более 82 научных и научно-методических работ, в том числе 18 книг.

Top.Mail.Ru


Яндекс.Метрика