Индикаторы обычно располагают в местах, удобных для просмотра информации, отображаемой на них. Остальная цифровая схема может располагаться на других печатных платах. При увеличении количества индикаторов увеличивается количество проводников между платой индикаторов и цифровой платой. Это приводит к определенным неудобствам разработки конструкции и эксплуатации аппаратуры. Эта же причина приводит к увеличению ее стоимости.
Количество соединительных проводников можно уменьшить, если заставить индикаторы работать в импульсном режиме. Человеческий глаз обладает инерционностью и если заставить индикаторы отображать информацию поочередно с достаточно большой скоростью, то человеку будет казаться, что все индикаторы отображают свою информацию непрерывно. В результате можно по одним и тем же проводникам поочередно передавать отображаемую информацию. Обычно достаточно частоты обновления информации 50 Гц, но лучше увеличить эту частоту до 100 Гц.
Давайте рассмотрим структурную схему включения семисегментных светодиодных индикаторов, приведенную на рисунке 1. Эта схема может обеспечить динамическую индикацию выдаваемой цифровой информации.
Рисунок 1. Структурная схема динамической индикации
В схеме, приведенной на рисунке 1, отображаются четыре цифровых разряда. Каждый разряд кратковременно подключается к своему входу коммутатора. Генератор служит для задания скорости обновления информации на индикаторах. Двоичный счетчик последовательно формирует четыре состояния схемы, а дешифратор через ключи обеспечивает поочередную подачу питания на семисегментные индикаторы.
В результате, когда коммутатор подает двоично-десятичный код с входа A на входы семисегментного дешифратора, то этот код отображается на индикаторе HL1. Когда коммутатор подает на входы семисегментного дешифратора двоично-десятичный код с входа B, то этот код отображается на индикаторе HL2, и так далее, по циклу.
Скорость обновления информации в рассмотренной схеме будет в четыре раза меньше частоты генератора. То есть для того, чтобы получить частоту мерцания индикаторов 100 Гц, требуется частота генератора 400 Гц.
Во сколько же раз мы в результате уменьшили количество соединительных проводников? Это зависит от того, где мы проведем сечение схемы. Если мы на плате индикации оставим только индикаторы, то для их работы потребуется 7 информационных сигналов для сегментов и четыре коммутирующих сигнала. Всего 11 проводников. В статической схеме индикации нам потребовалось бы 7×4=28 проводников. Как видим, выигрыш налицо. При реализации 8-ми разрядного блока индикации выигрыш будет еще больше.
Еще больший выигрыш будет, если сечение схемы провести по входам индикаторов. В этом случае для четырехразрядного блока индикации потребуется только шесть сигнальных проводников и два проводника питания схемы. Однако такая точка сечения схемы динамической индикации применяется очень редко.
Теперь давайте рассчитаем ток, протекающий через каждый сегмент светодиодного индикатора при его свечении. Для этого воспользуемся эквивалентной схемой протекания тока по одному из сегментов индикатора. Данная схема приведена на рисунке 2.
Как уже упоминалось ранее, для нормальной работы светодиода требуется ток от 3 до 10 мА. Зададимся минимальным током светодиода 3 мА. Однако при импульсном режиме работы яркость свечения индикатора падает в N раз, где коэффициент N равен скважности импульсов тока, подаваемых на этот индикатор.
Если мы собираемся сохранить ту же яркость свечения, то требуется увеличить величину импульсного тока, протекающего через сегмент, в N раз. Для восьмиразрядного индикатора коэффициент N равен восьми. Пусть первоначально мы выбрали статический ток через светодиод, равный 3 мА. Тогда для сохранения той же яркости свечения светодиода в восьмиразрядном индикаторе потребуется импульсный ток:
Такой ток с трудом смогут обеспечить только некоторые серии цифровых микросхем. Для большинства же серий микросхем потребуются усилители, выполненные на транзисторных ключах.
Теперь определим ток, который будет протекать через ключ, коммутирующий питание на отдельные разряды восьмиразрядного блока индикации. Как это видно из схемы, приведенной на рисунке 2, через ключ может протекать ток любого сегмента индикатора. При отображении цифры 8 потребуется зажечь все семь сегментов индикатора, значит импульсный ток, протекающий в этот момент через ключ, можно определить следующим образом:
Как вам такой ток?! В радиолюбительских схемах я часто встречаю решения, где коммутирующий ток берется непосредственно с выхода дешифратора, который не может выдать ток больше 20 мА, и задаю себе вопрос — а где смотреть такой индикатор? В полной темноте? Получается «прибор ночного видения», то есть прибор, показания которого видны только в полной темноте.