Дата последнего обновления файла 14.12.2017

Декодеры

Декодеры позволяют преобразовывать одни виды двоичных кодов в другие. Например, преобразовывать двоичный код в линейный восьмеричный или шестнадцатеричный. Преобразование производится по правилам, описанным в таблицах истинности, поэтому построение дешифраторов не представляет трудностей. Для построения дешифратора можно воспользоваться правилами синтеза логической схемы для произвольной таблицы истинности.

Десятичный декодер

Рассмотрим пример разработки декодера двоичного кода в десятичный. Десятичный код обычно отображается одним битом на одну десятичную цифру. Это классический пример, иллюстрирующий, что нулями и единицами описываются не только двоичные коды. В десятичном коде десять цифр, поэтому для отображения одного десятичного разряда требуется десять выходов дешифратора. Около каждого разряда десятичного кода может быть подписана десятичная цифра, которую представляет логическая единица в этом разряде. Сигнал с этих выводов дешифратора можно подать на десятичный индикатор. В простейшем случае над светодиодом можно просто подписать индицируемую цифру. В более сложных вариантах индикатор можно выполнить в виде десятичной цифры.

На входе дешифратора двоичный код записывается в соответствии с правилами двоичной системы счисления. Таблица истинности десятичного декодера приведена в таблице 1.

Таблица 1. Таблица истинности десятичного декодера.

Входы Выходы
8 4 2 1 0 1 2 3 4 5 6 7 8 9
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1

В соответствии с принципами построения схемы по произвольной таблице истинности получим схему декодера, реализующего таблицу истинности, приведённую в таблице 1. Его схема приведена на рисунке 1.

Принципиальная схема двоично-десятичного декодера
Рисунок 1. Принципиальная схема двоично-десятичного декодера

Как видно на этой схеме, для реализации каждой строки таблицы истинности (минтерма) потребовался логический элемент "4И". Логический элемент "ИЛИ", необходимый для реализации СДНФ, не потребовался, так как в таблице истинности на каждом выходе (столбце) присутствует только одна логическая единица.

Двоичные декодеры выпускаются в виде отдельных микросхем или используются в составе других микросхем. В настоящее время десятичные или восьмеричные дешифраторы используются в основном как составная часть других микросхем, таких как мультиплексоры, демультиплексоры, ПЗУ или ОЗУ.

Условно-графическое обозначение микросхемы дешифратора на принципиальных схемах приведено на рисунке 2. На этом рисунке приведено обозначение двоично-десятичного декодера, полная внутренняя принципиальная схема которого изображена на рисунке 1.

УГО десятичного декодера
Рисунок 2. Условно-графическое обозначение десятичного декодера

Точно таким же образом можно получить принципиальную схему и для любого другого декодера. Наиболее распространены схемы восьмеричных и шестнадцатеричных декодеров. Для применения в схемах индикации в настоящее время они практически не используются. В основном такие, или более сложные (с большим количеством выходов) декодены используются как составная часть более сложных цифровых модулей.

Семисегментный декодер

Для отображения десятичных и шестнадцатеричных цифр часто используется семисегментный индикатор. Внешний вид семисегментного индикатора и название его сегментов приведено на рисунке 3.

семисегментный индикатор
Рисунок 3. Внешний вид семисегментного индикатора и название его сегментов

Для отображения на таком индикаторе цифры 0 достаточно зажечь сегменты a, b, c, d, e, f. Для отображения цифры '1' зажигают сегменты b и c. Точно таким же образом можно получить изображения всех остальных десятичных или шестнадцатеричных цифр. Все комбинации двоичных бит, необходимых для получения их изображений получили название семисегментного кода.

Составим таблицу истинности дешифратора, который позволит преобразовывать двоичный код в семисегментный. Пусть сегменты зажигаются нулевым потенциалом. Тогда таблица истинности семисегментного дешифратора примет вид, приведенный в таблице 2. Конкретное значение сигналов на выходе дешифратора зависит от схемы подключения сегментов индикатора к выходу микросхемы. Эти схемы мы рассмотрим позднее, в главе, посвящённой отображению различных видов информации.

Таблица 2. Таблица истинности семисегментного декодера.

Входы Выходы
8 4 2 1 a b c d e f g
0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 1 1 1 1
0 0 1 0 0 0 1 0 0 1 0
0 0 1 1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 1 0 0 1 0 0
0 1 1 0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0

В соответствии с принципами построения схемы по произвольной таблицы истинности, получим принципиальную схему семисегментного декодера, реализующего таблицу истинности, приведённую в таблице 2. На этот раз не будем подробно расписывать процесс разработки схемы. Полученная принципиальная схема семисегментного декодера приведена на рисунке 4.

Схема семисегментного декодера
Рисунок 4. Принципиальная схема семисегментного декодера

Для облегчения понимания принципов работы схемы на выходе логических элементов "И" показаны номера строк таблицы истинности, реализуемые ими.

Например, на выходе сегмента 'a' логическая единица появится только при подаче на вход комбинации двоичных сигналов 0001 (1) и 0100 (4). Это осуществляется объединением соответствующий цепей элементом "2ИЛИ". На выходе сегмента 'b' логическая единица появится только при подаче на вход комбинации двоичных сигналов 0101 (5) и 0110 (6), и так далее.

В настоящее время семисегментные дешифраторы выпускаются в виде отдельных микросхем или используются в виде готовых блоков составе других микросхем. Условно-графическое обозначение микросхемы семисегментного дешифратора приведено на рисунке 5.

Условно-графическое обозначение семисегментного декодера
Рисунок 5. Условно-графическое обозначение семисегментного декодера

В качестве примера промышленного производства семисегментных декодеров можно назвать такие микросхемы отечественного производства как К176ИД3. В современных цифровых схемах семисегментные дешифраторы обычно входят в состав больших интегральных схем (ПЛИС или FPGA) или реализуются программно.


Понравился материал? Поделись с друзьями!


Литература:

  1. Микушин А.В., Сажнев А.М., Сединин В.И. Цифровые устройства и микропроцессоры. СПб, БХВ-Петербург, 2015.
  2. Угрюмов Е. П. Цифровая схемотехника. СПб, БХВ-Петербург, 2010.
  3. Шило В. Л. Популярные цифровые микросхемы. М, Радио и связь, 1987.
  4. Дж. Ф. Уэкерли Проектирование цифровых устройств. М, Постмаркет, 2002.
  5. Шило В. Л. "Популярные микросхемы КМОП" — М.: "Горячая Линия - Телеком" 2002
  6. "CMOS Power Consumption and Cpd Calculation" "Texas Instruments" 1997
  7. "Input and Output Characteristic of Digital Integrated Circuits" "Texas Instruments" 1996
  8. "LOGIC MIGRATION GUIDE" "Texas Instruments" 2004

Вместе со статьей "Дешифраторы (декодеры)" читают:

Законы алгебры логики Законы алгебры логики позволяют преобразовывать логические функции. Логические функции преобразуются с целью их упрощения, а это ведет к упрощению цифровой схемы...
https://digteh.ru/digital/AlgLog.php

Синтез цифровых комбинационных схем по произвольной таблице истинности Для реализации цифровых логических схем с произвольной таблицей истинности используется сочетание простейших логических элементов. Существует два способа синтеза цифровых схем, реализующих произвольную таблицу истинности...
https://digteh.ru/digital/SintSxem.php

Шифраторы (кодеры) Достаточно часто перед разработчиками цифровой аппаратуры встаёт обратная задача. Требуется преобразовать восьмиричный или десятичный линейный код в...
https://digteh.ru/digital/Coder.php

Мультиплексоры Мультиплексорами называются устройства, которые позволяют подключать несколько входов к одному выходу...
https://digteh.ru/digital/MS.php

Демультиплексоры Демультиплексорами называются устройства... Существенным отличием от мультиплексора является...
https://digteh.ru/digital/DMS.php


Автор Микушин А. В. All rights reserved. 2001 ... 2023

Предыдущие версии сайта:
http://neic.nsk.su/~mavr
http://digital.sibsutis.ru/

Поиск по сайту сервисом Яндекс
Поиск по сайту сервисом ГУГЛ
Об авторе:
к.т.н., доц., Александр Владимирович Микушин

Кандидат технических наук, доцент кафедры САПР СибГУТИ. Выпускник факультета радиосвязи и радиовещания (1982) Новосибирского электротехнического института связи (НЭИС).

А.В.Микушин длительное время проработал ведущим инженером в научно исследовательском секторе НЭИС, конструкторско технологическом центре "Сигнал", Научно производственной фирме "Булат". В процессе этой деятельности он внёс вклад в разработку систем радионавигации, радиосвязи и транкинговой связи.

Научные исследования внедрены в аппаратуре радинавигационной системы Loran-C, комплексов мобильной и транкинговой связи "Сигнал-201", авиационной системы передачи данных "Орлан-СТД", отечественном развитии системы SmarTrunkII и радиостанций специального назначения.

А.В.Микушин является автором 130 научных и научно-методических работ, в том числе 21 монография и 26 учебников и учебных пособий.

Top.Mail.Ru

Яндекс.Метрика