Декодеры позволяют преобразовывать одни виды двоичных кодов в другие. Например, преобразовывать двоичный код в линейный восьмеричный или шестнадцатеричный. Преобразование производится по правилам, описанным в таблицах истинности, поэтому построение дешифраторов не представляет трудностей. Для построения дешифратора можно воспользоваться правилами синтеза логической схемы для произвольной таблицы истинности.
Десятичный декодер
Рассмотрим пример разработки декодера двоичного кода в десятичный. Десятичный код обычно отображается одним битом на одну десятичную цифру. Это классический пример, иллюстрирующий, что нулями и единицами описываются не только двоичные коды. В десятичном коде десять цифр, поэтому для отображения одного десятичного разряда требуется десять выходов дешифратора. Около каждого разряда десятичного кода может быть подписана десятичная цифра, которую представляет логическая единица в этом разряде. Сигнал с этих выводов дешифратора можно подать на десятичный индикатор. В простейшем случае над светодиодом можно просто подписать индицируемую цифру. В более сложных вариантах индикатор можно выполнить в виде десятичной цифры.
На входе дешифратора двоичный код записывается в соответствии с правилами двоичной системы счисления. Таблица истинности десятичного декодера приведена в таблице 1.
Таблица 1. Таблица истинности десятичного декодера.Входы | Выходы | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8 | 4 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
В соответствии с принципами построения схемы по произвольной таблице истинности получим схему декодера, реализующего таблицу истинности, приведённую в таблице 1. Его схема приведена на рисунке 1.
Рисунок 1. Принципиальная схема двоично-десятичного декодера
Как видно на этой схеме, для реализации каждой строки таблицы истинности (минтерма) потребовался логический элемент "4И". Логический элемент "ИЛИ", необходимый для реализации СДНФ, не потребовался, так как в таблице истинности на каждом выходе (столбце) присутствует только одна логическая единица.
Двоичные декодеры выпускаются в виде отдельных микросхем или используются в составе других микросхем. В настоящее время десятичные или восьмеричные дешифраторы используются в основном как составная часть других микросхем, таких как мультиплексоры, демультиплексоры, ПЗУ или ОЗУ.
Условно-графическое обозначение микросхемы дешифратора на принципиальных схемах приведено на рисунке 2. На этом рисунке приведено обозначение двоично-десятичного декодера, полная внутренняя принципиальная схема которого изображена на рисунке 1.
Рисунок 2. Условно-графическое обозначение десятичного декодера
Точно таким же образом можно получить принципиальную схему и для любого другого декодера. Наиболее распространены схемы восьмеричных и шестнадцатеричных декодеров. Для применения в схемах индикации в настоящее время они практически не используются. В основном такие, или более сложные (с большим количеством выходов) декодены используются как составная часть более сложных цифровых модулей.