Логические КМОП (КМДП) инверторы
Микросхемы на комплементарных МОП транзисторах (КМОП-микросхемы) строятся на основе МОП транзисторов с n- и p-каналами. Эти транзисторы часто называют МДП транзисторами, поэтому микросхемы тоже могут называться КМДП (иностранное название: CMOS logic). Один и тот же входной потенциал открывает транзистор с n-каналом и закрывает транзистор с p-каналом. При формировании логической единицы открыт верхний транзистор, а нижний закрыт. В результате ток через КМОП схему не протекает.
При формировании логического нуля открыт нижний транзистор, а верхний закрыт. И в этом случае ток от источника питания через микросхему не протекает. Простейший логический элемент — это инвертор. Принципиальная схема инвертора, выполненного на комплементарных МОП транзисторах, приведена на рисунке 1.
Рисунок 1. Принципиальная схема инвертора, выполненного на комплементарных МОП транзисторах (КМОП-инвертор)
Схему, изображенную на рисунке 1 часто называют базовым элементом КМОП-микросхем. На этой схеме для упрощения понимания принципов работы КМОП микросхемы не показаны защитные и паразитные диоды. Особенностью микросхем на комплементарных МОП транзисторах (КМОП-микросхем) является то, что в этих микросхемах в статическом режиме ток практически не потребляется. Потребление тока происходит только в момент ее переключения из единичного состояния в нулевое и наоборот. Этот ток вызван двумя причинами — одновременным переходом верхнего и нижнего МОП транзисторов в активный режим работы и перезарядом паразитной ёмкости нагрузки.
В результате этой особенности КМОП-микросхем, они обладают преимуществом перед рассмотренными ранее видами цифровых микросхем — потребляют ток в зависимости от поданной на вход тактовой частоты. Примерный график зависимости потребления тока КМОП-микросхемы в зависимости от частоты ее переключения приведен на рисунке 2
Рисунок 2. Зависимость тока потребления КМОП микросхемы от частоты
Подробно зависимость тока потребления КМДП микросхем от частоты переключения логических вентилей приведено в документе "CMOS Power Consumption and Cpd Calculation" фирмы Texas Instruments [7].
Логические КМОП (КМДП) элементы "И"
Схема логического элемента
Рисунок 3. Принципиальная схема логического элемента
В этой схеме можно было бы применить в верхнем плече обыкновенный резистор, однако при формировании низкого уровня сигнала схема постоянно потребляла бы ток. Вместо этого, в качестве нагрузки используются p-МОП транзисторы. Эти транзисторы образуют активную нагрузку. Если на выходе требуется сформировать высокий потенциал, то транзисторы открываются, а если низкий — то закрываются.
Обратите внимание, что КМОП топология логического элемента "2И-НЕ" получается еще проще. В качестве нижних двух полевых
транзисторов используется единый n канал, на котором формируется два затвора (двухзатворный полевой транзистор). Упрощенная
топология логического элемента
Рисунок 4. Упрощенная топология логического элемента
Такая топология позволяет занимать на кристалле интегральной микросхемы минимальное место и получать максимальную плотность логических элементов. Способом, подобным приведенному на рисунке 4 легко могут быть получены логические элементы "3И-НЕ", "4И-НЕ", "8И-НЕ" и т.д.
В приведённой на рисунке 3 схеме логического КМОП-элемента "2И-НЕ", ток от источника питания на выход КМОП-микросхемы будет поступать через один из транзисторов, если хотя бы на одном из входов (или на обоих сразу) будет присутствовать низкий потенциал (уровень логического нуля). Если же на обоих входах логического КМОП-элемента "И" будет присутствовать уровень логической единицы, то оба p-МОП транзистора будут закрыты и на выходе КМОП микросхемы сформируется низкий потенциал. В этой схеме, так же как и в схеме, приведенной на рисунке 1, если транзисторы верхнего плеча будут открыты, то транзисторы нижнего плеча будут закрыты, поэтому в статическом состоянии ток КМОП-микросхемой от источника питания потребляться не будет.
Условно-графическое изображение КМОП логического элемента
Рисунок 5. Условно-графическое изображение логического элемента "2И-НЕ"
Таблица 1. Таблица истинности КМОП-микросхемы, выполняющей логическую функцию "2И-НЕ"
x1 | x2 | F |
---|---|---|
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Логические КМОП (КМДП) элементы "ИЛИ"
Логический элемент
Рисунок 6. Принципиальная схема логического элемента "ИЛИ-НЕ", выполненного на комплементарных МОП транзисторах
В схеме КМОП логического элемента
Таблица истинности логического элемента
Рисунок 7. Условно-графическое изображение элемента "2ИЛИ-НЕ"
Таблица 2. Таблица истинности МОП микросхемы, выполняющей логическую функцию "2ИЛИ-НЕ"
x1 | x2 | F |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 0 |
В настоящее время именно КМОП-микросхемы получили наибольшее развитие. Причём наблюдается постоянная тенденция к снижению напряжения питания данных микросхем. Первые серии КМОП-микросхем, такие как К1561 (иностранный аналог C4000В) обладали достаточно широким диапазоном изменения напряжения питания (3..18В). При этом при понижении напряжения питания у конкретной микросхемы понижается её предельная частота работы. В дальнейшем, по мере совершенствования технологии производства, появились улучшенные КМОП-микросхемы с лучшими частотными свойствами и меньшим напряжением питания, например, SN74HC.