Понятие угла отсечки. Коэффициенты Берга

В усилителях мощности одним из основных параметров является коэффициент полезного действия — к.п.д. В рассмотренном в предыдущей статье усилителе класса A через усилительный каскад постоянно протекает ток. В мощных усилителях он достигает значительной величины. Первоначально для увеличения экономичности усилителей вводили автоматическую регулировку положения рабочей точки в зависимости от уровня сигнала. Затем заметили, что в ряде случаев усиление возможно при ограничении сигнала снизу (отсечке).

После этого была выполнена исследовательская работа зависимости параметров синусоидального сигнала от угла отсечки. Понятие угла отсечки сигнала проще всего пояснить по рисунку 1.

Рисунок, поясняющий понятие угла отсечки
Рисунок 1. Определение угла отсечки по выходному току

На данном рисунке часть синусоиды, показанная серым цветом, на выходе транзистора отсутствует (отсекается). Угол отсечки определяется как половина фазового угла прохождения тока через транзистор или электронную лампу за период синусоидального колебания. Так как ток на выходе усилительного прибора уже не соответствует входному сигналу, то при поступлении на вход синусоидального сигнала, на его выходе образуется ряд гармонических составляющих. Их можно определить при помощи преобразования Фурье:

      (1),
      (2),
      (3),
      (4),

Функции зависимости амплитуды гармоники от угла отсечки получили название функций Берга. По этим графикам можно определить уровень гармоники в выходном сигнале и коэффициент полезного действия. Функции Берга для первых пяти гармоник приведены на рисунке 2.

Функции Берга график
Рисунок 2. Графики коэффициентов Берга

На данных графиках угол отсечки, равный 180°, соответствует усилителю класса A. Для этого усилителя гармоники входного сигнала отсутствуют, а уровень тока потребления α0 и полезного сигнала α1 совпадают. Это соответствует коэффициенту полезного действия 50%. Угол отсечки, равный 120°, соответствует усилителю класса AB. В данном случае максимальный к.п.д можно ожидать в районе 65%, уровень второй гармоники — 18%, уровень третьей гармоники — 6%. Причем третья гармоника находится в противофазе с полезным сигналом.

Усилитель класса B работает при угле отсечки, равном 90°. По графику, приведенному на рисунке 2, определяем отношение = 1,56. Отсюда максимально достижимй к.п.д. такого усилителя будет равным 78%. При необходимости можно определить угол отсечки, при котором максимума достигнет вторая или третья гармоники входного сигнала.

В качестве еще одного примера применения коэффициентов Берга определим максимально достижимый к.п.д усилителя класса C, работающего при угле отсечки тока, равном 30°. = 1,91. Отсюда максимально достижимй к.п.д. такого усилителя будет равным 95%.

Следует отметить, что коэффициент усиления тоже зависит от угла отсечки выходного тока. При уменьшении Θ он уменьшается. Это следует учитывать при проектировании усилителя мощности. График зависимости коэффициента усиления от угла отсечки приведен на рисунке 3


Рисунок 3. График зависимости коэффициента усиления по мощности от угла отсечки

Максимальная достижимая выходная мощность на выходе транзистора или электронной лампы тоже зависит от угла отсечки. График этой зависимости приведен на рисунке 4.


Рисунок 4. График зависимости выходной мощности от угла отсечки

Дата последнего обновления файла 5.04.2018


Понравился материал? Поделись с друзьями!


Литература:

  1. Steve C. Cripps RF Power Amplifiers for Wireless Communications — ARTECH HOUSE, INC., 2006
  2. Marian K. Kazimierczuk RF Power Amplifiers — John Wiley & Sons, Ltd 2008
  3. Радиопередающие устройства: учебник для ВУЗов; под ред. В. В. Шахдильдяна — 3-е изд., перераб. и доп. — М.: Радио и связь, 2003
  4. Широкополосные радиопередающие устройства (Радиочастотные тракты на полупроводниковых приборах); под ред. О. В. Алексеева — М.: Связь, 1978
  5. Расчет коэффициентов Берга — exponenta.ru
  6. Спектр выходного тока при гармоническом сигнале на входе — jstonline.narod.ru

Вместе со статьей "Понятие угла отсечки. Коэффициенты Берга" читают:

Усилитель класса A
https://digteh.ru/Sxemoteh/RejRab/A/

Усилитель класса B
https://digteh.ru/Sxemoteh/RejRab/A/

Усилитель класса C
https://digteh.ru/Sxemoteh/RejRab/C/

Усилитель класса D
https://digteh.ru/Sxemoteh/RejRab/D/

Усилитель класса E
https://digteh.ru/Sxemoteh/RejRab/E/

Усилитель класса F
https://digteh.ru/Sxemoteh/RejRab/F/


Автор Микушин А. В. All rights reserved. 2001 ... 2024

Предыдущие версии сайта:
http://neic.nsk.su/~mavr
http://digital.sibsutis.ru/

Поиск по сайту сервисом Яндекс
Поиск по сайту сервисом ГУГЛ
Об авторе:
к.т.н., доц., Александр Владимирович Микушин

Кандидат технических наук, доцент кафедры САПР СибГУТИ. Выпускник факультета радиосвязи и радиовещания (1982) Новосибирского электротехнического института связи (НЭИС).

А.В.Микушин длительное время проработал ведущим инженером в научно исследовательском секторе НЭИС, конструкторско технологическом центре "Сигнал", Научно производственной фирме "Булат". В процессе этой деятельности он внёс вклад в разработку систем радионавигации, радиосвязи и транкинговой связи.

Научные исследования внедрены в аппаратуре радинавигационной системы Loran-C, комплексов мобильной и транкинговой связи "Сигнал-201", авиационной системы передачи данных "Орлан-СТД", отечественном развитии системы SmarTrunkII и радиостанций специального назначения.

А.В.Микушин является автором 130 научных и научно-методических работ, в том числе 21 монография и 26 учебников и учебных пособий.

Top.Mail.Ru

Яндекс.Метрика