При реализации алгоритмов обработки аналоговых сигналов часто приходится осуществлять вычисление математических функций. Наиболее распространенными функциями являются логарифмическая и экспоненциальная фунцкции. Эти функции применяются в схемах уменьшения и увеличения динамического диапазона передаваемого или записываемого сигнала (компандирование). Еще одним распространенным применением схем вычисления математических функций экспоненты и логарифмирования является вычисление произведения и деления входных сигналов.
Для вычисления нелинейной функции часто применяют операционный усилитель, охваченный отрицательной обратной связью. В качестве примера на рисунке 1 приведена схема логарифмического усилителя. Так как на входе операционного усилителя используется дифференциальный усилитель, то его неинвертирующий вход нужно соединить с корпусом.

Рисунок 1. Схема логарифмического усилителя
В данной схеме в цепь отрицательной обратной связи включен нелинейный элемент (полупроводниковый диод), который обладает экспоненциальной зависимостью тока от приложенного напряжения. В результате действия обратной связи зависимость выходного напряжения от входного становится логарифмической. Коэффициент усиления данной схемы логарифмирования определяется номиналом резистора R1. Обычно схема логарифмирования расчитывается на единичный коэффициент усиления.
Если в данной схеме применить диод с квадратичной вольтамперной характеристикой, то она будет вычислять корень квадратный от входного сигнала. Ее удобно применять в схемах определения амплитуды сигнала при квадратурной обработке сигналов.

Подобным образом вычисляется функция, обратная логарифмической — экспонента. Только в этом случае нелинейный элемент включается не в цепь обратной связи, а на вход усилителя. На рисунке 2 приведена схема вычисления экспоненты на операционном усилителе.

Рисунок 2. Схема вычисления экспоненты
Если в данной схеме применить диод с квадратичной вольтамперной характеристикой, то схема будет вычислять квадрат от входного напряжения и ее можно будет применять в качестве схемы определения входной мощности сигнала.
При помощи данных схем вычисления математических функций можно вычислить произведение двух аналоговых сигналов. При этом используется хорошо известное свойство логарифмов заменять произведение переменных на сумму логарифмов этих переменных. Для обратного преобразования применяется функция вычисления экспоненты. При этом совершенно не важно основание логарифма.

Схема умножителя, реализующая формулу (1) на операционных усилителях, приведена на рисунке 3.

Рисунок 3. Схема умножителя на операционных усилителях
Несмотря на простоту реализации, подобная схема применяется достаточно редко, т.к. умножение возможно только положительных входных значений. Поэтому обычно применяются схемы умножителей, построенных на базе кольцевых смесителей на транзисторах.
Для вычисления функций не всегда удается подобрать нелинейный элемент с заданной вольтамперной характеристикой. В этом случае можно воспользоваться кусочно-линейной аппроксимацией функции. На операционном усилителе легко реализовать любой коэффициент усиления просто меняя значение резистора в цепи обратной связи, тем самым задавая крутизну функции. Переключение резисторов при изменении входного напряжения легче всего сделать на диодных ключах, на которые подается заданное нами напряжение запирания. Подобная схема приведена на рисунке 4.

Рисунок 4. Схема функционального усилителя
Умножители, реализованные на транзисторах, часто применяются для вычисления более сложных функций. В простейшем случае входы
X и Y можно объединить и получить схему вычисления квадрата от входного сигнала (
Их можно использовать в качестве электронных регуляторов напряжения. Подавая на один из входов постоянное напряжение можно регулировать на выходе уровень переменного напряжения, подаваемого на выход.