В настоящее время при разработке радиоэлектронной аппаратуры уделяется огромное внимание стабильности ее характеристик. Средства подвижной радиосвязи, в том числе сотовой связи не являются исключением. Основным условием достижения стабильных характеристик узлов радиоэлектронной аппаратуры является стабильность частоты задающего генератора.
В составе любой радиоэлектронной аппаратуры, в том числе приемников, передатчиков, микроконтроллеров обычно присутствует большое количество генераторов. Первоначально приходилось применять усилия для обеспечения стабильности частоты всех генераторов. С развитием цифровой техники люди научились формировать колебание любой частоты из одной исходной частоты. В результате появилась возможность выделить дополнительные средства для повышения стабильности частоты ОДНОГО генератора и тем самым получить целый ряд частот с очень высокой стабильностью. Такой генератор частот получил название опорный генератор
Первоначально для получения стабильных колебаний LC генераторов применялись особые конструктивные методы:
- Изменение индуктивности за счет расширения металла проволоки компенсировали выбором материала сердечника, влияние которого было обратным по отношению к влиянию проводников индуктивности;
- осуществляли вжигание металла в керамический сердечник с малым температурным коэффициентом расширения;
- в контур включались конденсаторы с различным температурным коэффициентом емкости (ТКЕ).
Таким образом удавалось достигнуть стабильности частоты опорного генератора 10–4 (на частоте 10 МГц уход частоты составлял 1 кГц)
Одновременно велись работы по применению совершенно других методов получения стабильных колебаний. Были разработаны струнные, камертонные, магнитострикционные генераторы. Их стабильность достигала весьма высоких значений, но при этом габариты, сложность и цена препятствовали их широкому распространению. Революционным прорывом оказалась разработка генераторов с применением кварцевых резонаторов. Одна из наиболее распространенных схем кварцевых генераторов, выполненная на биполярном транзисторе, приведена на рисунке 1.
Рисунок 1. Схема кварцевого генератора на биполярном транзисторе
В этой схеме опорного генератора баланс амплитуд обеспечивается транзистором VT1 а баланс фаз — контуром Z1, C1, C2. Генератор собран по стандартной схеме Колпитца. Отличием является то, что вместо катушки индуктивности применяется кварцевый резонатор Z1. Следует заметить, что в данной схеме не обязательно для обеспечения стабильной работы схемы применять эмиттерную стабилизацию. Часто оказывается вполне достаточно и коллекторной стабилизации режима работы транзистора. Подобная схема приведена на рисунке 2.
Рисунок 2. Схема кварцевого генератора с коллекторной стабилизацией режима
Схемы кварцевых генераторов, приведенных на рисунках 1 и 2, позволяют получить стабильность частоты опорного колебания порядка 10–5 На кратковременную стабильность колебаний опорного генератора наибольшее влияние оказывает нагрузка. При присутствии на выходе опорного генератора посторонних колебаний возможен захват его колебаний. В результате кварцевый генератор будет производить колебания с частотой помех. Для того, чтобы это явление не проявлялось в опорном генераторе на его выходе обычно ставят усилитель, основное назначение которого не пропустить внешние колебания в кварцевый генератор. Подобная схема приведена на рисунке 3.
Рисунок 3. Схема кварцевого генератора с развязкой частотозадающих цепей от выхода схемы
Не менее важным параметром, во многом определяющим фазовые шумы генератора (для цифровых схем — джиттер сигнала синхронизации), является напряжение питания, поэтому опорные кварцевые генераторы обычно запитывают от высокостабильного малошумящего источника напряжения и осуществляют фильтрацию питания RC или LC цепочками.