Квадратурная модуляция (QAM)

Для увеличения скорости передачи данных используют так называемую квадратурную амплитудную модуляцию QAM, которая является амплитудно-фазовым видом модуляции. QAM применяется в кабельных модемах, в стандарте цифрового телевидения DVB-C, а также, в цифровом радиовещании СВЧ диапазона.

С точки зрения скорости передачи этот вид модуляции намного более эффективен по сравнению с двоичной (BPSK), четырехпозиционной (QPSK) или восьмипозиционной (8-PSK) фазовой модуляцией. Следует сразу оговориться, что QPSK и 4-QAM на самом деле один и тот же вид модуляции.

В 16-позиционной QAM (16-QAM) существует по четыре сигнальных значения для каждой из квадратурных компонент I и Q. Этим достигаются шестнадцать значений суммарного сигнала.

Зная, что 16 = 24, получаем, что в 16-QAM одним символом могут быть переданы четыре бита. Это означает, что символьная скорость в таком виде модуляции получается в четыре раза меньше битовой, т. е. равна 1/4 от битовой скорости. Таким образом, данный тип модуляции позволяет организовать спектрально более эффективную передачу данных. Векторная диаграмма сигнала 16-QAM приведена на рисунке 1.

Векторная диаграмма сигнала 16-QAM
Рисунок 1. Векторная диаграмма сигнала 16-QAM

Точно так же, как и в других системах модуляции в 16-QAM применяется кодирование Грея. Соответствие сигнальных созвездий, кода Грея и цифровых значений сигналов I и Q для 16-QAM, приведено на рисунке 2.

Соответствие сигнальных созвездий, кода Грея и цифровых значений сигналов I и Q для 16-QAM
Рисунок 2. Соответствие сигнальных созвездий, кода Грея и цифровых значений сигналов I и Q для 16-QAM

Глазковая диаграмма сигналов I и Q для 16-позиционной квадратурной модуляции 16 QAM приведена на рисунке 3.

Глазковая диаграмма сигналов I и Q 16-позиционной квадратурной модуляции 16 QAM
Рисунок 3. Глазковая диаграмма сигналов I и Q 16-позиционной квадратурной модуляции 16 QAM

В 16-ти позиционной QAM (16-QAM) существует по четыре сигнальных значения для каждой из квадратурных компонент I и Q. Этим достигаются 16 значений суммарного сигнала.

Для иллюстрации, на рисунке 4 приведена фотография экрана измерительного прибора — векторного анализатора. На этом рисунке видны векторная, глазковая диаграмма и основные характеристики сигнала 16-QAM на частоте 450 МГц.

векторная, глазковая диаграмма и основные характеристики 16 QAM
Рисунок 4. Экран векторного анализатора, на котором видны векторная, глазковая диаграмма и основные характеристики сигнала 16-QAM на частоте 450 МГц

Еще одна разновидность QAM — это 32-QAM. Ее характеристики таковы: по шесть сигнальных значений для I и для Q, что в итоге дает 6 × 6 = 36 точек созвездия для суммарного сигнала. Сигнальное созвездие сигнала 32-QAM приведено на рисунке 5.

Сигнальное созвездие сигнала 32-QAM
Рисунок 5. Сигнальное созвездие сигнала 32-QAM

Этот тип модуляции наделен особенностью. В итоге, количество значений 36 не соответствует исходным данным, т.к. слишком велико, (36 > 32). Поэтому, четыре "угловых" сигнальных значения, (на которые приходится большинство мощности передатчика), опущены. Этим уменьшается значение выходной мощности, которую должен генерировать передатчик. Исходя из того, что 32 = 25, получаем битовую скорость, равную 5 бит/с и символьную скорость, равную 1/5.

Особенность сигналов QAM — это возможность увеличивать количество сигнальных точек в обмен на помехоустойчивость. В результате в одной и той же полосе сигналов есть возможность увеличивать скорость передачи цифровой информации. Ограничение на увеличение пропускной способности канала накладывает только сложность реализации аппаратуры телекоммуникационных устройств

Дата последнего обновления файла 31.01.2020

Литература:

  1. Steve C. Cripps RF Power Amplifiers for Wireless Communications — ARTECH HOUSE, INC., 2006
  2. Marian K. Kazimierczuk RF Power Amplifiers — John Wiley & Sons, Ltd 2008
  3. Радиопередающие устройства: учебник для ВУЗов; под ред. В. В. Шахгильдяна. — 3-е изд., перераб. и доп. — М.: Радио и связь, 2003.

Вместе со статьей "Квадратурная модуляция (QAM)" читают:

Четырехпозиционная фазовая модуляция (QPSK)
https://digteh.ru/UGFSvSPS/modul/QPSK/

Двухпозиционная фазовая модуляция (BPSK)
https://digteh.ru/UGFSvSPS/modul/BPSK/

Гауссовская модуляция (GMSK)
https://digteh.ru/UGFSvSPS/modul/GMSK/

Быстрая частотная модуляция (FFSK)
https://digteh.ru/UGFSvSPS/modul/FFSK/

MSK-модуляция частотная с минимальным сдвигом по частоте
https://digteh.ru/UGFSvSPS/modul/MSK/




Автор Микушин А. В. All rights reserved. 2001 ... 2019

Предыдущие версии сайта:
http://neic.nsk.su/~mavr
http://digital.sibsutis.ru/

Поиск по сайту сервисом Яндекс
Поиск по сайту сервисом ГУГЛ
Об авторе:
к.т.н., доц., Александр Владимирович Микушин

Кандидат технических наук, доцент кафедры САПР СибГУТИ. Выпускник факультета радиосвязи и радиовещания (1982) Новосибирского электротехнического института связи (НЭИС).

А.В.Микушин длительное время проработал ведущим инженером в научно исследовательском секторе НЭИС, конструкторско технологическом центре "Сигнал", Научно производственной фирме "Булат". В процессе этой деятельности он внёс вклад в разработку систем радионавигации, радиосвязи и транкинговой связи.

Научные исследования внедрены в аппаратуре радинавигационной системы Loran-C, комплексов мобильной и транкинговой связи "Сигнал-201", авиационной системы передачи данных "Орлан-СТД", отечественном развитии системы SmarTrunkII и радиостанций специального назначения.

А.В.Микушин является автором более 82 научных и научно-методических работ, в том числе 18 книг.

Top.Mail.Ru


Яндекс.Метрика