Дата последнего обновления файла 21.12.2008

Фильтры устранения эффекта наложения спектров (Антиалайзинговые фильтры)

Говоря о дискретизации низкочастотного сигнала (например, звукового или видеосигнала) предполагается, что подлежащий дискретизации сигнал находится в первой зоне Котельникова. Важно обратить внимание на то, что без фильтрации на входе идеального дискретизатора любой частотный компонент (сигнал или шум), который находится выше верхней частоты Котельникова, будет отображаться в полосу частот полезного сигнала. Поэтому при дискретизации низкочастотного сигнала на входе аналого-цифрового преобразователя для подавления мешающих сигналов всегда используется фильтр нижних частот.

Очень важно правильно предъявить требования к характеристикам аналогового фильтра, ограничивающего спектр сигнала на входе АЦП. Сначала определяются характеристики полезного сигнала, подлежащего дискретизации. Обозначим наивысшую из интересующих нас частот fв. Аналоговый входной фильтр должен пропускать сигналы, лежащие в полосе частот полезного сигнала от 0 до fв, и подавлять сигналы с частотой выше fдfв.

Пусть верхняя частота полосы пропускания аналогового фильтра будет равна fв. На рисунке 1 показан эффект возникновения помехи, обусловленной отображением сигнала из второй зоны Котельникова в полосу полезного сигнала. Именно эта помеха определяет динамический диапазон цифрового устройства DR.


Рисунок 1 Влияние частоты дискретизации на требования к характеристикам аналогового фильтра

В приведённом примере составляющие спектра, которые попадают в диапазон частот от fв до fд/2, не представляют интереса, так как они будут в дальнейшем отфильтрованы цифровым фильтром. Поэтому они не ограничивают динамический диапазон разрабатываемой системы. Необходимо отметить, что в ряде источников эффект отображения частот верхних зон Найквиста в первую зону называется эффектом "заворота спектра".

Из рисунка 1 видно, что требования к крутизне амплитудно-частотной характеристики входного аналогового фильтра определяется верхней частотой сигнала fв, началом полосы задерживания fз = fд – fв и требуемым затуханием в полосе задерживания аналогового фильтра.

Требуемое затухание аналогового фильтра в полосе задерживания определяется динамическим диапазоном полезного сигнала DR. Динамический диапазон цифрового устройства выбирается исходя из заданной точности представления сигнала. При этом нижняя граница динамического диапазона DR будет определяться уровнем всех помех, попадающих в полосу частот полезного сигнала.

При всех прочих равных условиях фильтры становятся более сложными при увеличении крутизны спада АЧХ. Известно, что фильтр Баттерворта обладает крутизной спада АЧХ 6 дБ/октаву.

Рассмотрим в качестве примера фильтр, требующийся для звуковой карты. Зададимся верхней частотой звукового сигнала. Пусть эта частота будет равна 20 кГц. Для обеспечения подавления мешающего сигнала на частоте 40 кГц на 60 дБ, (отстройка по частоте равна 1 октаве) требуется как минимум фильтр 10-го порядка. Подобный фильтр, весьма трудоемок при разработке и дорог в производстве.

Тем не менее, при таких условиях частота дискретизации входного сигнала должна быть не менее 60 кГц и при этом мы сможем обеспечить только 10-разрядную точность представления сигнала в цифровом виде.

Кроме сложности разработки и производства подобных фильтров, фильтры высокого порядка обладают ещё рядом недостатков, таких как нелинейная фазовая характеристика и связанное с ней увеличение групповой задержки полезного сигнала на краю полосы пропускания фильтра.

Увеличение групповой задержки на краю полосы пропускания фильтра может привести к тому, что даже при работе со звуковым сигналом эти искажения будут восприниматься человеческим ухом. Еще большее влияние фазовые искажения оказывают при приеме цифровых сигналов или при обработке сигналов изображения.

Все перечисленные выше факторы приводят к тому, что при преобразовании сигнала из аналоговой формы в цифровую, нежелательно использовать для формирования спектра аналоговые фильтры высокого порядка, так как они вызывают значительные искажения формы исходного аналогового сигнала.


Рисунок 2 АЧХ фильтра Баттерворта 10-го порядка

В качестве примера характеристик аналогового фильтра на рисунке 2 приведена амплитудно-частотная характеристика фильтра Баттерворта 10-го порядка, на рисунке 3 - приведена фазочастотная характеристика этого же фильтра, а на рисунке 4 - зависимость группового времени запаздывания входного сигнала от частоты.


Рисунок 3 ФЧХ фильтра Баттерворта 10-го порядка

Рисунок 4. Групповая задержка фильтра Баттерворта 10-го порядка

По этим характеристикам можно определить, что фазовая характеристика обладает наибольшей крутизной на краю полосы пропускания фильтра, на частоте 11 кГц. Это обусловлено наибольшей задержкой высокочастотных составляющих входного сигнала. Задержка сигнала на частоте 11 кГц достигает значения 12 мс. Такое значение задержки высокочастотных составляющих звукового сигнала уже воспринимается человеческим ухом как искажение исходного сигнала.

Из приведённых рассуждений видно, что на входе аналого-цифрового преобразователя нежелательно использовать аналоговый  фильтр высокого порядка. Тогда единственной возможностью увеличения динамического диапазона цифрового устройства остается увеличение разноса частот полезного и мешающего сигналов. Это может быть осуществлено за счет увеличения частоты дискретизации входного сигнала.

Обычно частоту дискретизации увеличивают в целое число раз для того, чтобы в дальнейшем можно было бы ограничить полосу сигнала при помощи цифрового фильтра и затем в соответствующее число раз уменьшить частоту дискретизации сигнала на его выходе, иначе говоря, провести операцию децимации цифрового сигнала.

Подобная ситуация иллюстрируется рисунком 3, где частота дискретизации аналогового сигнала увеличена в k раз, по сравнению со случаем, приведенным на рисунке 1 при неизменных требованиях к частоте среза fв и к динамическому диапазону DR. Более пологий скат делает новый фильтр проще для проектирования, по сравнению со случаем, показанным на рисунке 1.


Рисунок 5. Влияние частоты дискретизации на требования к характеристикам аналогового фильтра

Выбор более высокой скорости дискретизации приводит к необходимости использования более быстрого АЦП и более высокой скорости обработки данных. Тем не менее, ИЗБЫТОЧНАЯ ДИСКРЕТИЗАЦИЯ УМЕНЬШАЕТ ТРЕБОВАНИЯ К КРУТИЗНЕ СПАДА АМПЛИТУДНО-ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ АНАЛОГОВОГО ФИЛЬТРА НИЖНИХ ЧАСТОТ.

Процесс проектирования аналогового фильтра, предназначенного для устранения эффекта наложения спектров, начинается с выбора начальной частоты дискретизации. Она обычно выбирается в диапазоне от 2,5×fв до 4×fв. Затем, исходя из требуемого динамического диапазона, определяются требования к амплитудно-частотной характеристике фильтра, и определяется реализуемость такого фильтра с учетом ограничений по стоимости и габаритам разрабатываемой системы.

Если реализация входного аналогового фильтра окажется невозможной, то следует рассмотреть вариант с более высокой частотой дискретизации. При выборе такого варианта, возможно, потребуется более скоростной аналого-цифровой преобразователь. В ряде случаев разрядность скоростного АЦП можно взять ниже по сравнению с разрядностью низкоскоростного аналого-цифрового преобразователя, так как цифровые фильтры обладают свойством уменьшения шумов дискретизации.

 Следует отметить, что sigma-delta-АЦП изначально являются преобразователями с избыточной дискретизацией, и данное обстоятельство существенно ослабляет требования к аналоговому фильтру, предназначенному для устранения эффекта наложения спектров, что является дополнительным преимуществом при применении данного вида аналого-цифровых преобразователей.

Требования к аналоговому фильтру, предназначенному для устранения эффекта наложения спектров могут быть несколько ослаблены, если вы уверены, что сигналы с частотами, лежащими в полосе задерживания fд – fв, никогда не превысят уровня полезного сигнала.

Во многих системах появление таких сигналов действительно маловероятно. Если известно, что максимальный уровень сигнала в полосе частот fд – fв меньше амплитуды полезного сигнала на N дБ, то требования к затуханию в полосе задерживания входного фильтра может быть уменьшены на ту же самую величину.

Новые требования к затуханию в полосе задерживания fд – fв основано на том факте, что в этом случае требующееся значение подавления мешающего сигнала составляет DR – N дБ. В случае реализации этого варианта будьте внимательны. Убедитесь, что во входном сигнале нет любых составляющих спектра с частотами выше частоты fв с уровнем, равным уровню полезного сигнала. Все эти составляющие спектра будут создавать низкочастотные мешающие образы в полосе частот полезного сигнала.

Обратите внимание, что возможна обратная ситуация, когда уровень высокочастотных составляющих входного сигнала может превышать уровень полезного сигнала. В этом случае требования к входному фильтру низких частот ужесточаются на величину превышения уровня помех над полезным сигналом.


Понравился материал? Поделись с друзьями!


Литература:

  1. Микушин А.В., Сажнев А.М., Сединин В.И. Цифровые устройства и микропроцессоры. СПб, БХВ-Петербург, 2010.
  2. Уолт Кестер, Проектирование систем цифровой и смешанной обработки сигналов. М., Техносфера, 2010.
  3. Уолт Кестер, Применение высокоскоростных систем. М., Техносфера, 2009.
  4. Steven Xie Practical Filter Design Challenges and Considerations for Precision ADCs. URL: http://www.analog.com/, APR 2016.

Вместе со статьей "Фильтры устранения эффекта наложения спектров (Антиалиайзинговые фильтры)" читают:

Квантование (дискретизация) аналогового сигнала по времени
https://digteh.ru/digital/diskret.php

Погрешности дискретизатора
https://digteh.ru/digital/errdiskr.php

Дискретизация сигнала на промежуточной частоте (субдискретизация)
https://digteh.ru/digital/subdiskr.php

Параллельные АЦП (flash ADC)
https://digteh.ru/digital/FlashADC/


Автор Микушин А. В. All rights reserved. 2001 ... 2023

Предыдущие версии сайта:
http://neic.nsk.su/~mavr
http://digital.sibsutis.ru/

Поиск по сайту сервисом Яндекс
Поиск по сайту сервисом ГУГЛ
Об авторе:
к.т.н., доц., Александр Владимирович Микушин

Кандидат технических наук, доцент кафедры САПР СибГУТИ. Выпускник факультета радиосвязи и радиовещания (1982) Новосибирского электротехнического института связи (НЭИС).

А.В.Микушин длительное время проработал ведущим инженером в научно исследовательском секторе НЭИС, конструкторско технологическом центре "Сигнал", Научно производственной фирме "Булат". В процессе этой деятельности он внёс вклад в разработку систем радионавигации, радиосвязи и транкинговой связи.

Научные исследования внедрены в аппаратуре радинавигационной системы Loran-C, комплексов мобильной и транкинговой связи "Сигнал-201", авиационной системы передачи данных "Орлан-СТД", отечественном развитии системы SmarTrunkII и радиостанций специального назначения.

А.В.Микушин является автором 130 научных и научно-методических работ, в том числе 21 монография и 26 учебников и учебных пособий.

Top.Mail.Ru

Яндекс.Метрика