Дата последнего обновления файла 21.12.2008

Законы алгебры логики

Законы алгебры логики базируются на аксиомах и позволяют преобразовывать логические функции. Логические функции преобразуются с целью их упрощения, а это ведет к упрощению цифровой схемы.

АКСИОМЫ алгебры логики описывают действие логических функций "И" и "ИЛИ" и записываются следующими выражениями:

0 * 0 = 0
0 * 1 = 0
1 * 0 = 0
1 * 1 = 1
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1

Всего имеется пять законов алгебры логики:

1. Закон одинарных элементов

1 * X = X
0 * X = 0
1 + X = 1
0 + X = X

Этот закон алгебры логики непосредственно следует из приведённых выше выражений аксиом алгебры логики.

Верхние два выражения могут быть полезны при построении коммутаторов, ведь подавая на один из входов элемента “2И” логический ноль или единицу можно либо пропускать сигнал на выход, либо формировать на выходе нулевой потенциал.

Второй вариант использования этих выражений заключается в возможности избирательного обнуления определённых разрядов многоразрядного числа. При поразрядном применении операции "И" можно либо оставлять прежнее значение разряда, либо обнулять его, подавая на соответствующие разряды единичный или нулевой потенциал. Например, требуется обнулить 6, 3 и 1 разряды. Тогда:

В приведённом примере использования законов алгебры логики отчётливо видно, что для обнуления необходимых разрядов в маске (нижнее число) на месте соответствующих разрядов записаны нули, в остальных разрядах записаны единицы. В исходном числе (верхнее число) на месте 6 и 1 разрядов находятся единицы. После выполнения операции "И" на этих местах появляются нули. На месте третьего разряда в исходном числе находится ноль. В результирующем числе на этом месте тоже присутствует ноль. Остальные разряды, как и требовалось по условию задачи, не изменены.

Точно так же при помощи закона одинарных элементов, одного из основных законов алгебры логики, можно записывать единицы в нужные нам разряды. В этом случае необходимо воспользоваться нижними двумя выражениями закона одинарных элементов. При поразрядном применении операции "ИЛИ" можно либо оставлять прежнее значение разряда, либо обнулять его, подавая на соответствующие разряды нулевой или единичный потенциал. Пусть требуется записать единицы в 7 и 6 биты числа. Тогда:

Здесь в маску (нижнее число) мы записали единицы в седьмой и шестой биты. Остальные биты содержат нули, и, следовательно, не могут изменить первоначальное состояние исходного числа, что мы и видим в результирующем числе под чертой.

Первое и последнее выражения закона одинарных элементов позволяют использовать логические элементы с большим количеством входов в качестве логических элементов с меньшим количеством входов. Для этого неиспользуемые входы в схеме "И" должны быть подключены к источнику питания, как это показано на рисунке 1:


Рисунок 1. Схема "2И-НЕ", реализованная на логическом элементе "3И-НЕ"

В то же самое время неиспользуемые входы в схеме "ИЛИ" в соответствии с законом одинарных элементов должны быть подключены к общему проводу схемы, как это показано на рисунке 2.


Рисунок 2. Схема "НЕ", реализованная на элементе "2И-НЕ"

Следующими законами алгебры логики, вытекающими из аксиом алгебры логики являются законы отрицания.

2. Законы отрицания

a. Закон дополнительных элементов

Выражения этого закона алгебры логики широко используется для минимизации логических схем. Если удаётся выделить из общего выражения логической функции такие подвыражения, то можно сократить необходимое количество входов элементов цифровой схемы, а иногда и вообще свести всё выражение к логической константе.

Еще одним широко используемым законом алгебры логики является закон двойного отрицания.

b. Двойное отрицание

Закон двойного отрицания используется как для упрощения логических выражений (и как следствие упрощения и удешевления цифровых комбинаторных схем), так и для устранения инверсии сигналов после таких логических элементов как "2И-НЕ" и "2ИЛИ-НЕ". В этом случае законы алгебры логики позволяют реализовывать заданные цифровые схемы при помощи ограниченного набора логических элементов.

c. Закон отрицательной логики


Закон отрицательной логики справедлив для любого числа переменных. Этот закон алгебры логики позволяет реализовывать логическую функцию "И" при помощи логических элементов "ИЛИ" и наоборот: реализовывать логическую функцию "ИЛИ" при помощи логических элементов "И". Это особенно полезно в ТТЛ схемотехнике, так как там легко реализовать логические элементы "И", но при этом достаточно сложно логические элементы "ИЛИ". Благодаря закону отрицательной логики можно реализовывать элементы "ИЛИ" на логических элементах "И". На рисунке 3 показана реализация логического элемента "2ИЛИ" на элементе "2И-НЕ" и двух инверторах.


Рисунок 3. Логический элемент "2ИЛИ", реализованный на элементе "2И-НЕ" и двух инверторах

То же самое можно сказать и о схеме монтажного "ИЛИ". В случае необходимости его можно превратить в монтажное "И", применив инверторы на входе и выходе этой схемы.

3. Комбинационные законы

Комбинационные законы алгебры логики во многом соответствуют комбинационным законам обычной алгебры, но есть и отличия.

a. закон тавтологии (многократное повторение)

X + X + X + X = X
X * X * X * X = X

Этот закон алгебры логики позволяет использовать логические элементы с большим количеством входов в качестве логических элементов с меньшим количеством входов. Например, можно реализовать двухвходовую схему "2И" на логическом элементе "3И", как это показано на рисунке 4:


Рисунок 4. Схема "2И-НЕ", реализованная на логическом элементе "3И-НЕ"

или использовать схему "2И-НЕ" в качестве обычного инвертора, как это показано на рисунке 5:


Рисунок 5. Схема "НЕ", реализованная на логическом элементе "2И-НЕ"

Однако следует предупредить, что объединение нескольких входов увеличивает входные токи логического элемента и его ёмкость, что увеличивает ток потребления предыдущих элементов и отрицательно сказывается на быстродействии цифровой схемы в целом.

Для уменьшения числа входов в логическом элементе лучше воспользоваться другим законом алгебры логики — законом одинарных элементов, как это было показано выше.

Продолжим рассмотрение законов алгебры логики:

b. закон переместительности

A + B + C + D = A + C + B + D

c. закон сочетательности

A + B + C + D = A + (B + C) + D = A + B + (C + D)

d. закон распределительности

X1(X2 + X3) = X1X2 + X1X3 X1 + X2X3 = (X1 + X2)(X1 + X3) = /докажем это путём раскрытия скобок/ =
= X1X1 + X1X3 + X1X2 + X2X3 = X1(1 + X3 + X2) + X2X3 = X1 + X2X3

4. Правило поглощения (одна переменная поглощает другие)

X1 + X1X2X3 =X1(1 + X2X3) = X1

5. Правило склеивания (выполняется только по одной переменной)

Также как в обычной математике в алгебре логики имеется старшинство операций. При этом первым выполняется:

  1. Действие в скобках
  2. Операция с одним операндом (одноместная операция) — "НЕ"
  3. Конъюнкция — "И"
  4. Дизъюнкция — "ИЛИ"
  5. Сумма по модулю два.

Операции одного ранга выполняются слева направо в порядке написания логического выражения. Алгебра логики линейна и для неё справедлив принцип суперпозиции.

Литература:

  1. Микушин А.В., Сажнев А.М., Сединин В.И. Цифровые устройства и микропроцессоры. СПб, БХВ-Петербург, 2010.
  2. Угрюмов Е. П. Цифровая схемотехника. СПб, БХВ-Петербург, 2010.
  3. Шило В. Л. Популярные цифровые микросхемы. М, Радио и связь, 1987.
  4. Дискретная математика

Вместе со статьей "Законы алгебры логики" читают:

Синтез комбинационных цифровых схем по произвольной таблице истинности Любая логическая схема без памяти полностью описывается таблицей истинности... Для реализации таблицы истинности достаточно рассмотреть только те строки...
http://digteh.ru/digital/SintSxem.php

Дешифраторы (декодеры) Декодеры (дешифраторы) позволяют преобразовывать одни виды бинарных кодов в другие. Например...
http://digteh.ru/digital/DC.php

Шифраторы (кодеры) Достаточно часто перед разработчиками цифровой аппаратуры встаёт обратная задача. Требуется преобразовать восьмиричный или десятичный линейный код в...
http://digteh.ru/digital/Coder.php

Мультиплексоры Мультиплексорами называются устройства, которые позволяют подключать несколько входов к одному выходу...
http://digteh.ru/digital/MS.php

Демультиплексоры Демультиплексорами называются устройства... Существенным отличием от мультиплексора является...
http://digteh.ru/digital/DMS.php


Автор Микушин А. В. All rights reserved. 2001 ... 2017

Предыдущие версии сайта:
http://neic.nsk.su/~mavr
http://digital.sibsutis.ru/

Поиск по сайту сервисом Яндекс

Поиск по сайту сервисом ГУГЛ

пЕИРХМЦ@Mail.ru


Яндекс.Метрика
Rambler's Top100