Дата последнего обновления файла 29.12.2014

Кварцевые фильтры

При реализации частотных фильтров необходимо учитывать особенности их применения. Ранее мы уже рассмотрели, что активные фильтры (чаще всего активные RC фильтры) удобно применять для реализации относительно низкочастотных фильтров. Пассивные LC фильтры удобно применять в диапазоне частот от сотен килогерц до сотен мегагерц. Эти реализации фильтров достаточно удобны при изготовлении и в ряде случаев могут перестраиваться по частоте. Однако они обладают малой стабильностью параметров.

Значение сопротивления резисторов в фильтре не является постоянным. Оно меняется в зависимости от температуры, влажности или при старении элементов. То же самое можно сказать и про значение емкости конденсатора. В результате меняются частоты настройки полюсов фильтра и их добротности. Если есть нули коэффициента передачи фильтра, то их частоты настройки тоже меняются. В результате этих изменений фильтр меняет свою амплитудно-частотную характеристику. Про такой фильтр говорят, что он "разваливается"

Подобная ситуация происходит и с пассивными LC фильтрами. Правда в LC фильтрах зависимость частоты полюса или нуля меньше зависит от значения индуктивности и емкости. Эта зависимость пропорциональна корню квадратному в отличие от линейной зависимости в RC схемах. Поэтому LC схемы обладают большей стабильностью параметров (приблизительно 10−3).

При применении некоторых мер (таких как применение конденсаторов с положительным и отрицательным ТКЕ, термостабилизация) стабильность параметров описанных фильтров можно улучшить на порядок. Тем не менее при создании современно аппаратуры этого недостаточно. Поэтому, начиная с 40-х годов XX века велись поиски более стабильных решений.

В процессе исследований выяснили, что механические колебания, особенно в вакууме обладают меньшими потерями. Были разработаны фильтры на музыкальных камертонах, струнах. Механические колебания возбуждались, а затем снимались катушками индуктивности при помощи магнитного поля. Однако данные конструкции оказались дорогими и громоздкими.

Затем преобразование электрической энергии в механические колебания стали делать при помощи магнитострикционного и пьезо эффектов. Это позволило снизить габариты и стоимость фильтров. В результате исследований выяснили, что наибольшей стабильностью частоты колебаний обладают пластинки кварцевых кристаллов. Кроме того, они обладают пьезоэффектом. В результате к настоящему времени кварцевые фильтры являются самым распространенным видом высококачественных фильтров. Внутренняя конструкция и внешний вид кварцевого резонатора приведены на рисунке 1.


Рисунок 1. Внутренняя конструкция и внешний вид кварцевого резонатора

Одиночные кварцевые резонаторы редко используются в кварцевых фильтрах. Такое решение используется обычно радиолюбителями. В настоящее время намного выгодней купить готовый кварцевый фильтр. Тем более, что на рынке обычно предлагаются фильтры на наиболее распространенные промежуточные частоты. Фирмы-производители кварцевых фильтров для сокращения габаритов используют другое решение. На одной кварцевой пластине напыляется две пары электродов, которые образуют два резонатора, связанные между собой акустически. Внешний вид кварцевой пластинки с подобной конструкцией и чертеж корпуса, куда она размещается приведен на рисунке 2.


Рисунок 2. Внешний вид кварцевой пластинки с двумя резонаторами, чертеж корпуса и внешний вид кварцевого фильтра

Подобное решение получило название кварцевой двойки. Простейший кварцевый фильтр состоит из одной двойки. Её условно-графическое обозначение приведено на рисунке 3.


Рисунок 3. Условно-графическое обозначение кварцевой двойки

Кварцевая двойка по электрическим параметрам эквивалентна схеме полосового фильтра с двумя связанными контурами, приведенной на рисунке 4.


Рисунок 4. Двухконтурная схема фильтра, эквивалентная кварцевой двойке

Отличие заключается в достижимой добротности контуров, и, следовательно, полосе пропускания фильтра. Выигрыш особенно заметен на высоких частотах (десятки мегагерц). Кварцевые фильтры четвертого порядка выполняются на двух двойках, связанных между собой при помощи конденсатора. Вход и выход этих двоек уже не эквивалентен, поэтому обозначается точкой. Схема данного фильтра приведена на рисунке 5.


Рисунок 5. Схема кварцевого фильтра четвертого порядка

Фильтры L1C1 и L2C3 как обычно предназначены для трансформации входного и выходного сопротивления и приведения их к стандартному значению. Подобным же образом строятся кварцевые фильтры восьмого порядка. Для их реализации используют четыре кварцевых двойки, но в отличие от предыдущего варианта фильтр выполняется в одном корпусе. Принципиальная схема подобного фильтра приведена на рисунке 6.


Рисунок 6. Принципиальная схема кварцевого фильтра восьмого порядка

Внутреннюю конструкцию кварцевого фильтра восьмого порядка можно изучить по фотографии фильтра со снятой крышкой, которая приведена на рисунке 7.


Рисунок 7. Внутренняя конструкция кварцевого фильтра восьмого порядка

На фотографии четко просматриваются четыре кварцевых двойки и три конденсатора поверхностного монтажа (SMD). Подобная конструкция используется во всех современных фильтрах, как проникающего, так и поверхностного монтажа. Ее применяют как отечественные, так и зарубежные производители кварцевых фильтров. Из отечественных производителей можно назвать ОАО "Морион", ООО НПП "Метеор-Курс" или группу предприятий Пьезо. В списке литературы приведены некоторые из зарубежных производителей кварцевых фильтров. Следует заметить, что приведенная на рисунке 7 конструкция легко реализуется и в корпусах поверхностного монтажа (SMD).

Как мы видим, сейчас нет проблем купить готовый кварцевый фильтр с минимальными размерами и по приемлемой цене. Их можно использовать для проектирования высококачественных приемников, передатчиков трансиверов или других видов радиооборудования. Для того, чтобы легче ориентироваться в типах предлагаемых на рынке кварцевых фильтров, приведем график типовых зависимостей амплитудно-частотной характеристики от числа резонаторов (полюсов), приведенную фирмой SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL


Рисунок 8. Типовая форма АЧХ кварцевого фильтра в зависимости от числа полюсов


Понравился материал? Поделись с друзьями!


Литература:

  1. Титце У. Шенк К. Полупроводниковая схемотехника: Справочное руководство. Пер. с нем. — 12-е издание. М.: Додэка XXI, 2015. - 1784
  2. П. Хоровиц, У. Хилл Искусство схемотехники: Пер. с англ. - 7-е издание. - М.: БИНОМ. - 2016. - 704 с.
  3. Кварцевые фильтры ОАО "Морион"
  4. Кварцевые фильтры ООО НПП "Метеор-Курс"
  5. Кварцевые фильтры Группа предприятий Пьезо
  6. International Crystal Manufacturing Company Monolithic crystal filters
  7. SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL CO.,LTD. Quartz Crystal Filter
  8. uroquartz Ltd Filter
  9. А. Денисов Расчет лестничных кварцевых фильтров
  10. А. В. Белых Кварцевые фильтры КВ трансивера

Вместе со статьёй "Кварцевые фильтры" читают:

ПАВ фильтры
https://digteh.ru/Sxemoteh/filtr/SAW/

Пьезокерамические фильтры
https://digteh.ru/Sxemoteh/filtr/piezo/

Керамические фильтры СВЧ
https://digteh.ru/Sxemoteh/filtr/Ceramic/

Понятие ФНЧ-прототипа
https://digteh.ru/Sxemoteh/filtr/Prototip/

Аппроксимация АЧХ фильтров
https://digteh.ru/Sxemoteh/filtr/Approks/

Схемы пассивных фильтров
https://digteh.ru/Sxemoteh/filtr/LC/

Схемы активных RC фильтров
https://digteh.ru/Sxemoteh/filtr/RC/


Автор Микушин А. В. All rights reserved. 2001 ... 2023

Предыдущие версии сайта:
http://neic.nsk.su/~mavr
http://digital.sibsutis.ru/

Поиск по сайту сервисом Яндекс
Поиск по сайту сервисом ГУГЛ
Об авторе:
к.т.н., доц., Александр Владимирович Микушин

Кандидат технических наук, доцент кафедры САПР СибГУТИ. Выпускник факультета радиосвязи и радиовещания (1982) Новосибирского электротехнического института связи (НЭИС).

А.В.Микушин длительное время проработал ведущим инженером в научно исследовательском секторе НЭИС, конструкторско технологическом центре "Сигнал", Научно производственной фирме "Булат". В процессе этой деятельности он внёс вклад в разработку систем радионавигации, радиосвязи и транкинговой связи.

Научные исследования внедрены в аппаратуре радинавигационной системы Loran-C, комплексов мобильной и транкинговой связи "Сигнал-201", авиационной системы передачи данных "Орлан-СТД", отечественном развитии системы SmarTrunkII и радиостанций специального назначения.

А.В.Микушин является автором 130 научных и научно-методических работ, в том числе 21 монография и 26 учебников и учебных пособий.

Top.Mail.Ru

Яндекс.Метрика