Фазо-частотная характеристика — это зависимость сдвига фаз между выходным синусоидальным колебанием и входным от частоты. Идеальной фазо-частотной зависимостью является линейная зависимость фазы от частоты, как это показано на рисунке 1.
Рисунок 1. Идеальная фазо-частотная характеристика
Не все сигналы одинаково чувствительны к фазовым искажениям. Фазовые искажения звукового сигнала практически не ощущаются человеческим ухом, в то же самое время фазовые искажения телевизионного сигнала легко обнаруживаются человеческим глазом. Не менее вредны фазовые искажения при передаче импульсного или цифрового сигнала. Связано это с тем, что неискаженный сигнал должен быть просто задержан относительно входного, как это показано на рисунке 2.
Рисунок 2. Неискаженная передача сигнала
Если разложить прямоугольный сигнал на синусоидальные составляющие, то можно отследить как меняется фаза в зависимости от частоты при отсутствии искажений. На рисунке 3 показаны три основных синусоидальных составляющих сигнала последовательности прямоугольных импульсов.
Рисунок 3. Задержка синусоидальных составляющих при отсутствии фазовых искажений
На этом рисунке красным цветом показана первая гармоника, синим цветом третья гармоника, а фиолетовым — пятая гармоника. Суммарный сигнал показан черным цветом. При задержке данного сигнала на 0,2 мС сдвиг фазы первой гармоники должен быть 90°, сдвиг фазы третьей гармоники — 270°, а пятой гармоники уже 450°! Как видно из данного примера, все точки находятся на одной прямой. Иными словами линейная фазо-частотная характеристика соответствует одинаковой временной задержке всех частотных составляющих полезного сигнала.
И действительно, ведь производная фазовой характеристики по частоте соответствует групповой задержке сигнала:
Следовательно линейной фазовой характеристике соответствует постоянное групповое время задержки сигнала. Причем чем больше крутизна фазовой характеристики, тем больше время запаздывания. Предельный случай — нулевая задержка соответствует нулевому сдвигу по фазе на всех частотах.