Дата последнего обновления файла 09.10.2016

Представление чисел в двоичном коде с плавающей запятой

Часто приходится обрабатывать очень большие числа (например, расстояние между звёздами) или наоборот очень маленькие числа (например, размеры атомов или электронов). При таких вычислениях пришлось бы использовать числа с очень большой разрядностью. В то же время нам не нужно знать расстояние между звёздами с точностью до миллиметра. Для вычислений с такими величинами числа с фиксированной запятой неэффективны.

В десятичной арифметике для записи таких чисел используется алгебраическая форма. При этом число записывается в виде мантиссы, умноженной на 10 в степени, отображающей порядок числа, Например:

0,2×105;
0,16×10-38

Для записи двоичных чисел тоже используется такая форма записи. Она позволяет работать с числами с большим диапазоном значений Эта форма записи называется запись числа с плавающей точкой. Напомним, что мантисса не может быть больше единицы и после запятой в мантиссе не можетзаписываться ноль.

В программировании для записи таких чисел используются специальные форматы переменных. В языке СИ это такие форматы как float и double. Они описываются стандартом IEEE 754. Этих же стандартов придерживается большинство других языков программирования. При работе с числами с плавающей запятой в составе языка программирования обычно не возникает трудностей. Все преобразования форматов чисел осуществляются средствами самого языка программирования. Однако при передаче данных или при работе с микроконтроллерами часто приходится писать программу на языке программирования ассемблер и тогда может потребоваться знание внутреннего представления этих чисел.

Для записи числа в формате с плавающей запятой одинарной точности требуется тридцатидвухбитовое слово. Для записи чисел с двойной точностью требуется шестидесятичетырёхбитовое слово. Чаще всего числа хранятся в нескольких соседних ячейках памяти процессора. Форматы числа в формате с плавающей запятой одинарной точности и числа в формате с плавающей запятой удвоенной точности приведены на рисунке

Распределение бит в числах в формате с плавающей запятой
Рисунок 1. Форматы числа с плавающей запятой

На рисунке буквой S обозначен знак числа, 0 — это положительное число, 1 — отрицательное число.

Группа бит, обозначенная e предназначена для записи смещённого порядка числа. Смещение потребовалось, чтобы не вводить в двоичный код числа с плавающей запятой еще один знак. Смещённый порядок всегда является положительным числом. В двоичном коде одинарной точности float для записи порядка числа выделено восемь бит. Для него смещение порядка числа принято 127. Для смещённого порядка в двоичном коде числа с плавающей запятой двойной точности double отводится 11 бит. В нем смещение порядка числа составляет — 1023.

В десятичной мантиссе после запятой могут присутствовать цифры 1...9, а в двоичной — только 1. Поэтому для хранения единицы после двоичной запятой не выделяется отдельный бит в числе с плавающей запятой. Единица подразумевается, как и двоичная запятая. Кроме того, в формате чисел с плавающей запятой принято, что мантисса всегда больше 1. То есть диапазон значений мантиссы лежит в диапазоне от 1 до 2.

Рассмотрим несколько примеров:

1) Определить число с плавающей запятой, лежащее в четырёх соседних байтах:

11000001 01001000 00000000 00000000

- Знаковый бит, равный 1 показывает, что число отрицательное.

- Экспонента 10000010 в десятичном виде соответствует числу 130. Вычтя число 127 из 130, получим число 3.

- Теперь запишем мантиссу: 1,100 1000 0000 0000 0000 0000

- И, наконец, определим десятичное число: 1100,1b = 12,5d

2) Определить число с плавающей запятой, лежащее в четырёх соседних байтах:

11000011 00110100 00000000 00000000

- Знаковый бит, равный 1 показывает, что число отрицательное.

- Экспонента 10000110 в десятичном виде соответствует числу 134. Вычтя число 127 из 134, получим число 7.

- Теперь запишем мантиссу: 1,011 0100 0000 0000 0000 0000

- И, наконец, определим десятичное число: 10110100b=180d

Для того чтобы записать ноль, в двоичном представлении числа с плавающей запятой достаточно записать в смещенный порядок число 00000000b. Значение мантиссы при этом не имеет значения. Число, в котором все байты равны 0, тоже попадает в этот диапазон значений.

Бесконечность в числе с плавающей запятой соответствует смещенному порядку 11111111b и мантиссе, равной 1,0. При этом существует минус бесконечность и плюс бесконечность (переполнение и антипереполнение), которые часто отображаются на экран монитора компьютера или дисплей микропроцессорного устройства как +INF и -INF.

Все остальные комбинации битов мантиссы числа с плавающей запятой (в том числе и все единицы) при смещенном порядке 11111111b воспринимаются языками программирования как не числа и отображаются на экран: NaN.

Литература:

  1. IEEE 754
  2.  Число с плавающей запятой wikipedia
  3. Разработка → Что нужно знать про арифметику с плавающей запятой https://habrahabr.ru/
  4. Представление вещественных чисел http://neerc.ifmo.ru/

Другие виды двоичных кодов:

Целочисленные двоичные коды Представление двоичных чисел в памяти компьютера или микроконтроллера
http://digteh.ru/proc/IntCod.php

Двоично-десятичный код Иногда бывает удобно хранить числа в памяти процессора в десятичном виде
http://digteh.ru/proc/DecCod.php

Запись текстов двоичным кодом Представление текстов в памяти компьютеров и микроконтроллеров
http://digteh.ru/proc/text.php

Системы счисления В настоящее время и в технике и в быту широко используются как позиционные, так и непозиционные системы счисления.
http://digteh.ru/digital/SysSchis.php


Автор Микушин А. В. All rights reserved. 2001 ... 2015

Предыдущие версии сайта:
http://neic.nsk.su/~mavr
http://digital.sibsutis.ru/

пЕИРХМЦ@Mail.ru


Rambler's Top100