Дата последнего обновления файла 21.02.2013

Динамическая индикация

Индикаторы обычно располагают в местах, удобных для просмотра информации, отображаемой на них. Остальная цифровая схема может располагаться на других печатных платах. При увеличении количества индикаторов увеличивается количество проводников между платой индикаторов и цифровой платой. Это приводит к определенным неудобствам разработки конструкции и эксплуатации аппаратуры. Эта же причина приводит к увеличению ее стоимости.

Количество соединительных проводников можно уменьшить, если заставить индикаторы работать в импульсном режиме. Человеческий глаз обладает инерционностью и если заставить индикаторы отображать информацию поочередно с достаточно большой скоростью, то человеку будет казаться, что все индикаторы отображают свою информацию непрерывно. В результате можно по одним и тем же проводникам поочередно передавать отображаемую информацию. Обычно достаточно частоты обновления информации 50 Гц, но лучше увеличить эту частоту до 100 Гц.

Давайте рассмотрим структурную схему включения семисегментных светодиодных индикаторов, приведенную на рисунке 1. Эта схема может обеспечить динамическую индикацию выдаваемой цифровой информации.


Рисунок 1. Структурная схема динамической индикации

В схеме, приведенной на рисунке 1, отображаются четыре цифровых разряда. Каждый разряд кратковременно подключается к своему входу коммутатора. Генератор служит для задания скорости обновления информации на индикаторах. Двоичный счетчик последовательно формирует четыре состояния схемы, а дешифратор через ключи обеспечивает поочередную подачу питания на семисегментные индикаторы.

В результате, когда коммутатор подает двоично-десятичный код с входа A на входы семисегментного дешифратора, то этот код отображается на индикаторе HL1. Когда коммутатор подает на входы семисегментного дешифратора двоично-десятичный код с входа B, то этот код отображается на индикаторе HL2, и так далее, по циклу.

Скорость обновления информации в рассмотренной схеме будет в четыре раза меньше частоты генератора. То есть для того, чтобы получить частоту мерцания индикаторов 100 Гц, требуется частота генератора 400 Гц.

Во сколько же раз мы в результате уменьшили количество соединительных проводников? Это зависит от того, где мы проведем сечение схемы. Если мы на плате индикации оставим только индикаторы, то для их работы потребуется 7 информационных сигналов для сегментов и четыре коммутирующих сигнала. Всего 11 проводников. В статической схеме индикации нам потребовалось бы 7×4=28 проводников. Как видим, выигрыш налицо. При реализации 8-ми разрядного блока индикации выигрыш будет еще больше.

Еще больший выигрыш будет, если сечение схемы провести по входам индикаторов. В этом случае для четырехразрядного блока индикации потребуется только шесть сигнальных проводников и два проводника питания схемы. Однако такая точка сечения схемы динамической индикации применяется очень редко.

Теперь давайте рассчитаем ток, протекающий через каждый сегмент светодиодного индикатора при его свечении. Для этого воспользуемся эквивалентной схемой протекания тока по одному из сегментов индикатора. Данная схема приведена на рисунке 2.

Как уже упоминалось ранее, для нормальной работы светодиода требуется ток от 3 до 10 мА. Зададимся минимальным током светодиода 3 мА. Однако при импульсном режиме работы яркость свечения индикатора падает в N раз, где коэффициент N равен скважности импульсов тока, подаваемых на этот индикатор.

Если мы собираемся сохранить ту же яркость свечения, то требуется увеличить величину импульсного тока, протекающего через сегмент, в N раз. Для восьмиразрядного индикатора коэффициент N равен восьми. Пусть первоначально мы выбрали статический ток через светодиод, равный 3 мА. Тогда для сохранения той же яркости свечения светодиода в восьмиразрядном индикаторе потребуется импульсный ток:

Iсег дин = Iсег стат×N = 3мА×8 = 24мА.

Такой ток с трудом смогут обеспечить только некоторые серии цифровых микросхем. Для большинства же серий микросхем потребуются усилители, выполненные на транзисторных ключах.

Теперь определим ток, который будет протекать через ключ, коммутирующий питание на отдельные разряды восьмиразрядного блока индикации. Как это видно из схемы, приведенной на рисунке 2, через ключ может протекать ток любого сегмента индикатора. При отображении цифры 8 потребуется зажечь все семь сегментов индикатора, значит импульсный ток, протекающий в этот момент через ключ, можно определить следующим образом:

Iкл = Iсег дин×Nсег = 24мА×7 = 168мА.

Как вам такой ток?! В радиолюбительских схемах я часто встречаю решения, где коммутирующий ток берется непосредственно с выхода дешифратора, который не может выдать ток больше 20 мА, и задаю себе вопрос — а где смотреть такой индикатор? В полной темноте? Получается «прибор ночного видения», то есть прибор, показания которого видны только в полной темноте.

А теперь давайте рассмотрим принципиальную схему полученного блока индикации. Она приведена на рисунке 3.


Рисунок 3. Принципиальная схема блока динамической индикации

Теперь, после того, как мы получили схему динамической индикации, можно обсудить ее достоинства и недостатки. Несомненным достоинством динамической индикации является малое количество соединительных проводов, что делает ее незаменимой в некоторых случаях, таких как работа с матричными индикаторами.

В качестве недостатка следует привести наличие больших импульсных токов, а так как любой проводник является антенной, то динамическая индикация служит мощным источником помех. Еще одним путем распространения помех является источник питания.

Обратим внимание, что фронта у коммутирующих импульсов очень короткие, поэтому их гармонические составляющие перекрывают диапазон радиочастот вплоть до ультракоротких волн.

Итак, применение динамической индикации позволяет минимизировать количество соединительных проводов между цифровым устройством и индикатором, но является при этом мощным источником помех, поэтому ее применение в радиоприемных устройствах нежелательно.

Если по каким-либо причинам, например, необходимость применения матричных индикаторов, приходится использовать динамическую индикацию, то нужно принять все меры по подавлению помех.

В качестве мер по подавлению помех от динамической индикации можно назвать экранирование блока, соединительного кабеля и плат. Использование минимальной длины соединительных проводов, применение фильтров по питанию. При экранировании блока, возможно, потребуется экранировать и сами индикаторы. При этом обычно используется металлическая сетка. Эта сетка одновременно может увеличить контрастность отображаемых символов.


Понравился материал? Поделись с друзьями!


Литература:

  1. Микушин А.В., Сажнев А.М., Сединин В.И. Цифровые устройства и микропроцессоры. СПб, БХВ-Петербург, 2010.
  2. Угрюмов Е. П. Цифровая схемотехника. СПб, БХВ-Петербург, 2004.
  3. Шило В. Л. Популярные цифровые микросхемы. М, Радио и связь, 1987.

Вместе со статьей "Динамическая индикация" читают:

Виды индикаторов Индикаторы предназначены для отображения различных видов информации для человека. Простейший вид информации - это...
https://digteh.ru/digital/Indic.php

Газоразрядные индикаторы Газоразрядные индикаторы используются как для индикации битовой информации, так и для отображения десятичной информации. При построении десятичных индикаторов катод...
https://digteh.ru/digital/GazIndic/

Светодиодные индикаторы В настоящее время практически везде для отображения двоичной информации используются светодиоды. Это обусловлено тем...
https://digteh.ru/digital/LED.php

Жидкокристаллические индикаторыПринципы работы жидкокристаллических индикаторов... Режимы работы жидкокристаллических индикаторов... Формирование цветного изображения...
https://digteh.ru/digital/LCD.php


Автор Микушин А. В. All rights reserved. 2001 ... 2023

Предыдущие версии сайта:
http://neic.nsk.su/~mavr
http://digital.sibsutis.ru/

Поиск по сайту сервисом Яндекс
Поиск по сайту сервисом ГУГЛ
Об авторе:
к.т.н., доц., Александр Владимирович Микушин

Кандидат технических наук, доцент кафедры САПР СибГУТИ. Выпускник факультета радиосвязи и радиовещания (1982) Новосибирского электротехнического института связи (НЭИС).

А.В.Микушин длительное время проработал ведущим инженером в научно исследовательском секторе НЭИС, конструкторско технологическом центре "Сигнал", Научно производственной фирме "Булат". В процессе этой деятельности он внёс вклад в разработку систем радионавигации, радиосвязи и транкинговой связи.

Научные исследования внедрены в аппаратуре радинавигационной системы Loran-C, комплексов мобильной и транкинговой связи "Сигнал-201", авиационной системы передачи данных "Орлан-СТД", отечественном развитии системы SmarTrunkII и радиостанций специального назначения.

А.В.Микушин является автором 130 научных и научно-методических работ, в том числе 21 монография и 26 учебников и учебных пособий.

Top.Mail.Ru

Яндекс.Метрика