Дата последнего обновления файла 10.10.2017

Опорные генераторы

В настоящее время при разработке радиоэлектронной аппаратуры уделяется огромное внимание стабильности ее характеристик. Средства подвижной радиосвязи, в том числе сотовой связи не являются исключением. Основным условием достижения стабильных характеристик узлов радиоэлектронной аппаратуры является стабильность частоты задающего генератора.

В составе любой радиоэлектронной аппаратуры, в том числе приемников, передатчиков, микроконтроллеров обычно присутствует большое количество генераторов. Первоначально приходилось применять усилия для обеспечения стабильности частоты всех генераторов. С развитием цифровой техники люди научились формировать колебание любой частоты из одной исходной частоты. В результате появилась возможность выделить дополнительные средства для повышения стабильности частоты ОДНОГО генератора и тем самым получить целый ряд частот с очень высокой стабильностью. Такой генератор частот получил название опорный генератор

Первоначально для получения стабильных колебаний LC генераторов применялись особые конструктивные методы:

  • Изменение индуктивности за счет расширения металла проволоки компенсировали выбором материала сердечника, влияние которого было обратным по отношению к влиянию проводников индуктивности;
  • осуществляли вжигание металла в керамический сердечник с малым температурным коэффициентом расширения;
  • в контур включались конденсаторы с различным температурным коэффициентом емкости (ТКЕ).

Таким образом удавалось достигнуть стабильности частоты опорного генератора 10–4 (на частоте 10 МГц уход частоты составлял 1 кГц)

Одновременно велись работы по применению совершенно других методов получения стабильных колебаний. Были разработаны струнные, камертонные, магнитострикционные генераторы. Их стабильность достигала весьма высоких значений, но при этом габариты, сложность и цена препятствовали их широкому распространению. Революционным прорывом оказалась разработка генераторов с применением кварцевых резонаторов. Одна из наиболее распространенных схем кварцевых генераторов, выполненная на биполярном транзисторе, приведена на рисунке 1.


Рисунок 1. Схема кварцевого генератора на биполярном транзисторе

В этой схеме опорного генератора баланс амплитуд обеспечивается транзистором VT1 а баланс фаз — контуром Z1, C1, C2. Генератор собран по стандартной схеме Колпитца. Отличием является то, что вместо катушки индуктивности применяется кварцевый резонатор Z1. Следует заметить, что в данной схеме не обязательно для обеспечения стабильной работы схемы применять эмиттерную стабилизацию. Часто оказывается вполне достаточно и коллекторной стабилизации режима работы транзистора. Подобная схема приведена на рисунке 2.


Рисунок 2. Схема кварцевого генератора с коллекторной стабилизацией режима

Схемы кварцевых генераторов, приведенных на рисунках 1 и 2, позволяют получить стабильность частоты опорного колебания порядка 10–5 На кратковременную стабильность колебаний опорного генератора наибольшее влияние оказывает нагрузка. При присутствии на выходе опорного генератора посторонних колебаний возможен захват его колебаний. В результате кварцевый генератор будет производить колебания с частотой помех. Для того, чтобы это явление не проявлялось в опорном генераторе на его выходе обычно ставят усилитель, основное назначение которого не пропустить внешние колебания в кварцевый генератор. Подобная схема приведена на рисунке 3.


Рисунок 3. Схема кварцевого генератора с развязкой частотозадающих цепей от выхода схемы

Не менее важным параметром, во многом определяющим фазовые шумы генератора (для цифровых схем — джиттер сигнала синхронизации), является напряжение питания, поэтому опорные кварцевые генераторы обычно запитывают от высокостабильного малошумящего источника напряжения и осуществляют фильтрацию питания RC или LC цепочками.

Наибольший вклад в нестабильность частоты кварцевого генератора вносит температурная зависимость резонансной частоты кварцевого резонатора. При изготовлении резонаторов кварцевых опорных генераторов обычно применяются AT-срезы, обеспечивающие наилучшую стабильность частоты в зависимости от температуры. Она составляет 1*10–5 (10 миллионнных или 10 ppm). Пример зависимости частоты кварцевых резонаторов с AT-срезом от температуры при различных углах среза (шаг изменения угла среза 10') приведен на рисунке 4.


Рисунок 4. Зависимость частоты кварцевых резонаторов с AT-срезом от температуры

Нестабильности частоты 1*10–5 достаточно для большинства радиоэлектронных устройств, поэтому кварцевые генераторы без специальных мер по повышению стабильности частоты применяются очень широко. Опорные генераторы с кварцевой стабилизацией без дополнительных мер по стабилизации частоты называются XO.

Как это видно из рисунка 4, зависимость частоты настройки кварцевого резонатора с AT-срезом от температуры хорошо известна. Более того, эту зависимость можно снять экспериментально для каждого конкретного экземплята кварцевого резонатора. Поэтому, если постоянно измерять температуру кварцевого кристалла (или температуру внутри кварцевого опорного генератора), то частоту генерации опорного генератора можно сместить к номинальному значению увеличивая или уменьшая дополнительную емкость, подключенную к кварцевому резонатору.

В зависимости от схемы управления частотой такие опорные генераторы называются TCXO (кварцевые генераторы с термокомпенсацией) либо MCXO (кварцевые генераторы с микроконтроллерным управлением). Стабильность частоты таких кварцевых опорных генераторов может достигать 0.5*10–6 (0.5 миллионных или 0.5 ppm)

В ряде случаев в опорных генераторах предусмотрена возможность подстройки номинальной частоты генерации в небольших пределах. Подстройка частоты осуществляется напряжением, подаваемым на варикап, подключенный к кварцевому резонатору. Диапазон подстройки частоты генератора не превышает долей процента. Такой генератор называется VCXO. Часть схемы опорного генератора (без схемы термокомпенсации) приведена на рисунке 5.

Кварцевый генератор с подстройкой частоты внешним напряжением (VCXO)
Рисунок 5. Кварцевый генератор с подстройкой частоты внешним напряжением (VCXO)

В настоящее время многие фирмы выпускают опорные генераторы со стабильностью частоты до 0,5*10–6 в малогабаритных корпусах. Пример чертежа подобного опорного генератора приведен на рисунке 6.

Внешний вид опорного кварцевого генератора с температурной компенсацией
Рисунок 6. Внешний вид опорного кварцевого генератора с температурной компенсацией

Понравился материал? Поделись с друзьями!


Литература:

  1. Опорные генераторы Сайт АО Омский научно-исследовательский институт приборостроения
  2. Сайт фирмы Racon Опорные кварцевые генераторы
  3. Кварцевые генераторы Официальный сайт фирмы ОАО Пьезо
  4. Официальный сайт фирмы Silicon Laboratories
  5. Temperature Compensated Crystal Oscillator (TCXO / VCTCXO) Pericom® Semicondactor company
  6. http://www.synergymwave.com (Специализируется на производстве высококачественных ГУН и кварцевых генераторов)
  7. http://www.ruknar.com/ РУБИДИЕВЫЕ ОПОРНЫЕ ГЕНЕРАТОРЫ И СТАНДАРТЫ ЧАСТОТЫ
  8. microsemi.com/(производит малогабаритные стандарты частоты) Miniature Rubidium Atomic Clock
  9. http://quartzlock.com/(производит малогабаритные стандарты частоты) Rubidium-oscillators E10-MRX
  10. http://www.iqdfrequencyproducts.com/(производит опорные генераторы) Advanced Modules & Rubidium Oscillators
  11. Кварцевые генераторы URL: http://www.radiosait.ru/

Вместе со статьей "Опорные генераторы" читают:

Особенности кварцевой стабилизации частоты генераторов
https://digteh.ru/WLL/KvGen.php

Синтезаторы частоты
https://digteh.ru/WLL/synt.php

Опорные кварцевые генераторы с температурной компенсацией ухода частоты TCXO
https://digteh.ru/SxemSovrTKU/gen/tcxo/

Опорные кварцевые генераторы с микроконтроллерной стабилизацией частоты MCXO
https://digteh.ru/SxemSovrTKU/gen/mcxo/

Термостатированные кварцевые опорные генераторы OCXO
https://digteh.ru/SxemSovrTKU/gen/ocxo/


Автор Микушин А. В. All rights reserved. 2001 ... 2023

Предыдущие версии сайта:
http://neic.nsk.su/~mavr
http://digital.sibsutis.ru/

Поиск по сайту сервисом Яндекс
Поиск по сайту сервисом ГУГЛ
Об авторе:
к.т.н., доц., Александр Владимирович Микушин

Кандидат технических наук, доцент кафедры САПР СибГУТИ. Выпускник факультета радиосвязи и радиовещания (1982) Новосибирского электротехнического института связи (НЭИС).

А.В.Микушин длительное время проработал ведущим инженером в научно исследовательском секторе НЭИС, конструкторско технологическом центре "Сигнал", Научно производственной фирме "Булат". В процессе этой деятельности он внёс вклад в разработку систем радионавигации, радиосвязи и транкинговой связи.

Научные исследования внедрены в аппаратуре радинавигационной системы Loran-C, комплексов мобильной и транкинговой связи "Сигнал-201", авиационной системы передачи данных "Орлан-СТД", отечественном развитии системы SmarTrunkII и радиостанций специального назначения.

А.В.Микушин является автором 130 научных и научно-методических работ, в том числе 21 монография и 26 учебников и учебных пособий.

Top.Mail.Ru

Яндекс.Метрика