Дата последнего обновления файла 04.02.2016

Метод начертательной геометрии. Виды проецирования

Изображения на плоскости получают методом проецирования. Аппарат проецирования представлен на рисунке 1.

Аппарат проецирования
Рисунок 1. Аппарат проецирования

Объект проецирования — точка А. Через точку А проходит проецирующий луч i с направлением к картинной плоскости, называемой плоскостью проекций. Точка пересечения проецирующего луча с плоскостью проекций называется проекцией точки. Обозначение проекции точки должно содержать индекс плоскости проекций. Например, при проецировании на плоскость Пn проекция точки будет обозначена — Аn.

Виды проецирования

Различают центральное и параллельное проецирование. В первом случае источник лучей находится в обозримом пространстве — точка S собственная, во втором — источник лучей расположен в бесконечности. Схемы центрального и параллельного проецирования приведены соответственно на рисунках 2 и 3. Модель центрального проецирования — пирамида (рисунок 4) или конус; модель параллельного проецирования — призма (рисунок 5) или цилиндр.

Схема центрального проецирования
Рисунок 2. Схема центрального проецирования

Проецированием на одну плоскость проекций получается изображение, которое однозначно не определяет форму и размеры предмета. На рисунке 1 проекция точки А — Аn не определяет положение самой точки в пространстве, поскольку по одной проекции невозможно определить расстояние, на котором точка находится от плоскости П. Наличие только одной проекции создает неопределенность изображения. В таких случаях, когда невозможно воспроизвести пространственный образ (оригинал) предмета, говорят о необратимости чертежа.

Схема параллельного проецирования
Рисунок 3. Схема параллельного проецирования
Модель центрального проецирования (пирамида)
Рисунок 4. Модель центрального проецирования (пирамида)

Модель параллельного проецирования (призма)
Рисунок 5. Модель параллельного проецирования (призма)

Для исключения неопределенности объекты проецируют на две, три и более плоскостей проекций. Ортогональное проецирование на две плоскости предложил французский геометр Гаспар Монж (ХVIII век). Метод Монжа представлен на рисунке 6,а,б,в (а — наглядное изображение точки в двугранном угле, б — комплексный чертеж точки, в — восстановление объекта, точки А, в пространстве по ее проекциям).

Проецирование точки
Рисунок 6. Проецирование точки:
а — образование проекций пространственной точки А;
б — чертеж точки А;
в — восстановление пространственного образа точки А по проекциям А1 и А2

Инвариантные свойства параллельных проекций:

  • проекция точки есть точка;
  • проекция прямой в общем случае прямая;
  • проекции взаимно параллельных прямых в общем случае — параллельные прямые;
  • проекции пересекающихся прямых — пересекающиеся прямые, при этом точки пересечения проекций прямых лежат на одном перпендикуляре к оси проекций;
  • если плоская фигура занимает положение, параллельное плоскости проекций, то она проецируется на эту плоскость в конгруэнтную фигуру.

Различают косоугольные и прямоугольные параллельные проекции. Если проецирующие лучи направлены к плоскости проекций под углом, отличным от прямого, то проекции называют косоугольными. Если проецирующие лучи перпендикулярны к плоскости проекций, то полученные проекции называют прямоугольными. Для прямоугольных проекций используют термин ортогональные от греческого ortos — прямой.

При ортогональном проецировании в пространство вводят две или три взаимно перпендикулярные плоскости, которым присваивают следующие названия и обозначения:

  • горизонтальная плоскость проекций — П1
  • фронтальная плоскость проекций — П2
  • профильная плоскость проекций — П3

Плоскости проекций бесконечны и, пересекаясь, делят пространство на восемь частей — октантов, как показано на рисунке 7.

Ортогональное проецирование
Рисунок 7. Три взаимно перпендикулярные плоскости проекций П1, П2 и П3 делят пространство на восемь частей (октантов)

В практике построения изображений чаще всего используют первый октант, который далее будем называть трехгранным углом. Наглядное изображение трехгранного угла приведено на рисунке 8.

Трехгранный угол, первый октант
Рисунок 8. Трехгранный угол, первый октант

При пересечении плоскостей проекций образуются прямые линии - оси проекций:

ось X (икс) — ось абсцисс 
ось Y (игрек) — ось ординат 
Ось Z (зет) — ось аппликат

Если оси проградуировать, то получится координатная система, в которой легко построить объект по заданным координатам. Система прямоугольных координат была предложена Декартом (ХVIIIв.). Ортогональным проекциям присущи все свойства параллельных проекций. На рисунке 9 показано преобразование трехгранного угла и образование комплексного чертежа точки А.

образование чертежа точки в трех проекциях
Рисунок 9. Преобразование трехгранного угла и образование чертежа точки в трех проекциях
а — наглядное изображение, б — развертка трехгранного угла, в — чертеж точки

На рисунке 10 приведен комплексный чертеж прямого кругового конуса, отмечена точка S — вершина конуса. Оси проекций X, Y, Z не показаны, что часто используется в практике построения чертежей.

Пример чертежа конуса и принадлежащей точки S
Рисунок 10. Пример чертежа конуса и принадлежащей точки S. Чертеж выполнен без указания осей проекций

Литература:

  1. Porcelain Superchip Multilayer Capacitors, American technical ceramics
  2. Chip Monolithic Ceramic Capacitors, Murata manufacturing Co, Ltd
  3. Сравнение: конденсаторы для усилителей (исследование нелинейности конденсаторов)

Другие параметры радиопередающих устройств:

Диапазон излучаемых частот в передатчиках устройств мобильной связи Очень важной характеристикой радиопередающего устройства является диапазон излучаемых частот. Для организации подвижной радиосвязи в УКВ диапазоне...
http://digteh.ru/UGFSvSPS/DiapPrdFr/

Выходная мощность сигнала передатчика Основным параметром радиопередающего устройства является мощность сигнала, излучаемого в эфир. Следует отметить, что требования...
http://digteh.ru/UGFSvSPS/power/


Авторы Быкова В. Н. Мефодьева Л Я All rights reserved. 2001 ... 2013

Предыдущие версии сайта:
http://neic.nsk.su/~mavr
http://digital.sibsutis.ru/

Поиск по сайту сервисом Яндекс

Поиск по сайту сервисом ГУГЛ

пЕИРХМЦ@Mail.ru


Яндекс.Метрика
Rambler's Top100