Выпрямитель переменного тока

Выпрямитель переменного электрического тока — это устройство, преобразующее переменный ток в постоянный. Он обычно реализуется на полупроводниковых диодах. Простейший выпрямитель переменного тока содержит трансформатор, выпрямительный диод и нагрузку. Его принципиальная схема приведена на рисунке 1.

выпрямитель тока
Рисунок 1. Схема простейшего выпрямителя переменного тока

Приведенная на рисунке 1 схема реализует однотактную схему выпрямления однофазного источника переменного напряжения. В нашей стране используется переменное напряжение ~220В. В этой схеме трансформатор понижает переменное синусоидальное напряжение до необходимого на выходе значения. Полупроводниковый диод пропускает ток через нагрузку только в одном направлении.

Выпрямленное напряжение Ud содержит полезную составляющую (постоянное напряжение U0) и ряд гармоник частоты входного тока fсети, в том числе и основную гармонику с частотой входного напряжения. Амплитуды гармоник тока на выходе однотактного выпрямителя напряжения можно определить по коэффициентам Берга для угла отсечки, равного 90°. В идеальном случае гармонический спектр продолжается до бесконечности. В реальных устройствах он ограничивается фильтрующим действием паразитных элементов схемы.

Как уже обсуждалось в статье "Преобразование переменного тока в постоянный", в однотактных схемах постоянный ток нагрузки протекает через трансформатор, поэтому его сердечник подмагничивается. Понять процессы, происходящие в однотактном выпрямителе, помогут временные диаграммы, приведенные на рисунке 2.

Временные диаграммы однополупериодного выпрямителя переменного напряжения
Рисунок 2. Временные диаграммы токов и напряжений однополупериодного выпрямителя переменного тока

Как уже определялось при обсуждении схемы замещения трансформатора, ток в первичной обмотке трансформатора равен сумме тока его холостого хода (ixx) и переменной составляющей тока нагрузки, пересчитанной в первичную цепь (i2’). Форма тока в первичной обмотке (i1) трансформатора, входящего в состав однополупериодного выпрямителя, сильно отличается от синусоидальной. По этой причине подобная схема применяется достаточно редко.

В общем случае, при работе от многофазной сети переменного тока, у трансформатора есть m1 первичных обмоток, подключенных к различным фазам сети, и р фаз во вторичной цепи, которое называют пульсностью. Обычно m1p. Пульсность схемы определяется произведением

p = k · q            (1)
     где k – число вторичных обмоток трансформатора
         q – число импульсов тока за период в одной обмотке.

С точки зрения выражения (1) однопериодный выпрямитель тока, принципиальная схема которого приведена на рисунке 1, обладает пульсностью p = 1 · 1 = 1

В качестве примера выпрямителя тока с количеством фаз напряжения на выходе больше, чем на входе, можно привести двухфазный однотактный выпрямитель тока. Его принципиальная схема приведена на рисунке 3.

Двухфазный однотактный выпрямитель переменного тока
Рисунок 3. Принципиальная схема двухфазного однотактного выпрямителя тока

В данном случае используются две вторичных обмотки, включенных противофазно (обмотка с отводом посередине). В течение одного периода сети через каждую из них протекает один импульс тока i2’ и i2". Благодаря диодам эти токи протекают через нагрузку в одном направлении, а через вторичные обмотки из-за противофазного включения — в разных направлениях. В результате форма тока в первичной обмотке не искажается и в сердечнике трансформатора не происходит подмагничивание постоянным током.

При этом с точки зрения выражения (1) в данной схеме пульсность p= k · q = 2 · 1 = 2. Уменьшение времени, когда на нагрузке отсутствует входное напряжение, позволяет значительно уменьшить габариты сглаживающего фильтра. Временные диаграммы токов и напряжений двухфазного однотактного выпрямителя тока приведены на рисунке 4.

Временные диаграммы однополупериодного двухфазного выпрямителя переменного тока
Рисунок 4. Временные диаграммы токов и напряжений двухфазного однотактного выпрямителя тока

При расчете сглаживающего фильтра очень важно знать частоту первой гармоники пульсаций. В схеме двухфазного однотактного выпрямителя она вдвое выше частоты сети (ТП = Т/2) и может быть определена через пульсность

fП = p · fс            (2)

В качестве еще одного примера схемы выпрямления переменного тока рассмотрим двухтактный выпрямитель. Его еще называют однофазным диодным мостом. Принципиальная схема двухтактного выпрямителя переменного напряжения приведена на рисунке 5.

Схема однофазного диодного моста
Рисунок 5. Принципиальная схема двухтактного выпрямителя переменного тока

Временные диаграммы токов и напряжений этого устройства совпадают с временными диаграммами двухфазного однотактного выпрямителя тока, приведенными на рисунке 4. В выпрямителе переменного тока на диодном мосте присутствует только одна вторичная обмотка, поэтому k = 1. В то же самое время количество импульсов тока за период равно 2, поэтому пульсность в данной схеме равна p= k · q = 1 · 2 = 2. По этой формуле полное название устройства, приведенного на рисунке 5, это двухтактный однофазный выпрямитель тока.

Частота первой гармоники пульсаций в данном случае, как и для двухфазного однотактного выпрямителя вдвое выше частоты сети. Тем не менее, области применения этих типов выпрямителей тока несколько отличаются. Для низковольтных устройств лучше подходит схема, показанная на рисунке 3, так как в ней падение напряжения происходит только на одном диоде. В ряде случаев это настолько важно, что можно пренебречь возрастанием стоимости трансформатора. В преобразователях AC/DC с относительно высоким выходным напряжением лучше применять схему, приведенную на рисунке 5, так как на ее диодах действует одинарное обратное напряжение (в схеме двухфазного однотактного выпрямителя — удвоенное, так как напряжение на нагрузке и напряжение обмотки трансформатора складываются).

Однофазный выпрямитель напряжения подходит только для схем с относительно небольшим потребляемым током. При необходимости получить значительные величины постоянного тока лучше использовать трехфазный выпрямитель тока. Его основным преимуществом является меньший уровень пульсаций выходного напряжения, что значительно снижает требования к сглаживающему фильтру. В качестве примера приведем схему трехфазного однотактного выпрямителя тока. Она показана на рисунке 6.

Схема трехфазного выпрямителя напряжения
Рисунок 6. Принципиальная схема трехфазного однотактного выпрямителя переменного тока

Трехфазный однотактный выпрямитель напряжения состоит из трёхфазного трансформатора и трёх выпрямительных диодов VD1, VD2 и VD3. Нагрузка включается между точкой соединения катодов диодов и общей точкой вторичных обмоток трансформатора. Для пояснения принципов работы данного устройства на рисунке 7 приведены временные диаграммы токов и напряжений на вторичных обмотках трансформатора, на выходе схемы и на одном из выпрямительных диодов.

Временные диаграммы трехфазного выпрямителя напряжения
Рисунок 7. Временные диаграммы токов и напряжений трехфазного однотактного выпрямителя тока

Трехфазный однотактный выпрямитель переменного тока применяется в относительно низковольтных устройствах. На его выходе удается получить пульсацию напряжения около 13%. Это соответствует требованиям к качеству питания большинства устройств. по крайней мере при сварке постоянным током электрическая дуга не будет гаснуть, что позволит получить качественный шов сварки металла.

Если для питания устройства требуется большее напряжение по сравнению с предыдущим случаем, то можно применить трехфазную двухтактную схему выпрямления тока. Она позволяет снизить требования к сглаживающему фильтру. Принципиальная схема трехфазного двухтактного выпрямителя тока приведена на рисунке 8. Это устройство известно также под названием трехфазного выпрямительного моста или схемы Ларионова.

Схема Ларионова
Рисунок 8. Принципиальная схема трехфазного выпрямительного моста

Напряжение на выходе схемы, приведенной на рисунке 8, можно представить как сумму двух трехфазных однотактных выпрямителей тока, работающих в противофазе. Его можно записать как Ud = Ud1 + Ud2. Это позволяет увеличить количество фаз на выходе схемы и тем самым увеличить основную частоту пульсаций выходного напряжения. Это позволяет уменьшить требования к сглаживающему фильтру, а в ряде случаев вообще отказаться от него.

В схеме Ларионова на входе выпрямителя присутствуют три фазы обмотки, поэтому k = 3 и ее пульсность p= k · q = 3 · 2 = 6. Отсюда можно определить основную частоту спектра пульсаций fП = 6 · fс. Временные диаграммы токов и напряжений в различных точках схемы трехфазного выпрямительного моста приведены на рисунке 9.

Временные диаграммы трехфазного двухтактного выпрямителя тока
Рисунок 9. Временные диаграммы токов и напряжений трехфазного выпрямительного моста

Как видно из приведенных временных диаграмм уровень пульсаций на выходе рассмотренного трехфазного выпрямителя тока значительно меньше предыдущих вариантов выпрямителей и составляет 3,5%. Однако с помощью трехфазного трансформатора можно получить на выходе количество фаз больше шести. Это позволяет дополнительно уменьшить уровень пульсаций напряжения на выходе трёхфазного выпрямителя тока. Возможна реализация девяти, двенадцати, восемнадцати и более фазных выпрямителей. Повышение количества фаз позволяет уменьшить уровень пульсаций напряжения на выходе выпрямителя. В качестве примера рассмотрим схему двенадцатипульсного выпрямителя тока. Его схема приведена на рисунке 10.


Рисунок 10. Схема двенадцатифазного выпрямителя тока

В данной схеме применяется трехфазный трансформатор с двумя вторичными обмотками для каждой фазы. При этом одна группа вторичных обмоток включается по схеме "звезда", а другая — "треугольник". В результате напряжения на выходе каждой из групп вторичных обмоток оказывается сдвинутыми на 30° Для того, чтобы напряжения были равны, количество витков в каждой из групп вторичных обмоток отличаются в 1.73 раза. Благодаря последовательному включению постоянные напряжения на выходе диодных мостов суммируются Ud = Ud1 + Ud2 и на нагрузке действует напряжение с частотой пульсаций в 12 раз выше частоты сети и значительно меньшим по сравнению с предыдущими схемами уровнем пульсаций, равным 0.9%.


Дата последнего обновления файла 16.02.2018


Понравился материал? Поделись с друзьями!


Литература:

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Денисов А.И., Зволинский В.М., Руденко Ю.В. Вентильные преобразователи в системах точной стабилизации. – К.: Наукова думка, 1997. – 250 с.

Вместе со статьей "Выпрямитель переменного тока" читают:

Преобразование переменного тока в постоянный
https://digteh.ru/BP/Preobraz/

Неуправляемый вентиль и его характеристики
https://digteh.ru/BP/Ventil/

Выпрямитель с индуктивной нагрузкой
https://digteh.ru/BP/IndHarNagr/

Выпрямитель с емкостной нагрузкой
https://digteh.ru/BP/EmkostHarNagr/


Автор Микушин А. В. All rights reserved. 2001 ... 2023

Предыдущие версии сайта:
http://neic.nsk.su/~mavr
http://digital.sibsutis.ru/

Поиск по сайту сервисом Яндекс
Поиск по сайту сервисом ГУГЛ
Об авторе:
к.т.н., доц., Александр Владимирович Микушин

Кандидат технических наук, доцент кафедры САПР СибГУТИ. Выпускник факультета радиосвязи и радиовещания (1982) Новосибирского электротехнического института связи (НЭИС).

А.В.Микушин длительное время проработал ведущим инженером в научно исследовательском секторе НЭИС, конструкторско технологическом центре "Сигнал", Научно производственной фирме "Булат". В процессе этой деятельности он внёс вклад в разработку систем радионавигации, радиосвязи и транкинговой связи.

Научные исследования внедрены в аппаратуре радинавигационной системы Loran-C, комплексов мобильной и транкинговой связи "Сигнал-201", авиационной системы передачи данных "Орлан-СТД", отечественном развитии системы SmarTrunkII и радиостанций специального назначения.

А.В.Микушин является автором 130 научных и научно-методических работ, в том числе 21 монография и 26 учебников и учебных пособий.

Top.Mail.Ru

Яндекс.Метрика